minimize.cc 18.7 KB
Newer Older
1
// -*- coding: utf-8 -*-
2
3
// Copyright (C) 2010, 2011, 2012, 2013, 2014 Laboratoire de Recherche
// et Développement de l'Epita (LRDE).
4
5
6
7
8
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
9
// the Free Software Foundation; either version 3 of the License, or
10
11
12
13
14
15
16
17
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
18
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
19

20
21
22
23
24
25
26
27
28

//#define TRACE

#ifdef TRACE
#  define trace std::cerr
#else
#  define trace while (0) std::cerr
#endif

29
#include <queue>
30
31
32
#include <deque>
#include <set>
#include <list>
33
#include <vector>
34
#include <sstream>
35
36
37
#include "minimize.hh"
#include "ltlast/allnodes.hh"
#include "misc/hash.hh"
38
#include "misc/bddlt.hh"
39
40
#include "tgba/tgbaproduct.hh"
#include "tgba/tgbatba.hh"
41
#include "tgba/wdbacomp.hh"
42
#include "tgbaalgos/powerset.hh"
43
44
45
#include "tgbaalgos/gtec/gtec.hh"
#include "tgbaalgos/safety.hh"
#include "tgbaalgos/sccfilter.hh"
46
#include "tgbaalgos/scc.hh"
47
#include "tgbaalgos/ltl2tgba_fm.hh"
48
#include "tgbaalgos/bfssteps.hh"
49
#include "tgbaalgos/isdet.hh"
50
#include "tgbaalgos/dtgbacomp.hh"
51
#include "priv/countstates.hh"
52
53
54

namespace spot
{
55
56
  // FIXME: do we really want to use unordered_set instead of set here?
  // This calls for benchmarking.
57
58
59
60
  typedef std::unordered_set<const state*,
			     state_ptr_hash, state_ptr_equal> hash_set;
  typedef std::unordered_map<const state*, unsigned,
			     state_ptr_hash, state_ptr_equal> hash_map;
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
  namespace
  {
    static std::ostream&
    dump_hash_set(const hash_set* hs, const tgba* aut, std::ostream& out)
    {
      out << "{";
      const char* sep = "";
      for (hash_set::const_iterator i = hs->begin(); i != hs->end(); ++i)
	{
	  out << sep << aut->format_state(*i);
	  sep = ", ";
	}
      out << "}";
      return out;
    }

    static std::string
    format_hash_set(const hash_set* hs, const tgba* aut)
    {
      std::ostringstream s;
      dump_hash_set(hs, aut, s);
      return s.str();
    }
  }

87
  // Find all states of an automaton.
88
  void build_state_set(const tgba* a, hash_set* seen)
89
  {
Felix Abecassis's avatar
Felix Abecassis committed
90
    std::queue<const state*> tovisit;
91
    // Perform breadth-first traversal.
Felix Abecassis's avatar
Felix Abecassis committed
92
    const state* init = a->get_init_state();
93
    tovisit.push(init);
94
    seen->insert(init);
95
96
    while (!tovisit.empty())
    {
Felix Abecassis's avatar
Felix Abecassis committed
97
      const state* src = tovisit.front();
98
      tovisit.pop();
99

100
101
102
      tgba_succ_iterator* sit = a->succ_iter(src);
      for (sit->first(); !sit->done(); sit->next())
      {
Felix Abecassis's avatar
Felix Abecassis committed
103
        const state* dst = sit->current_state();
104
        // Is it a new state ?
105
106
107
108
109
110
        if (seen->find(dst) == seen->end())
	  {
	    // Register the successor for later processing.
	    tovisit.push(dst);
	    seen->insert(dst);
	  }
111
        else
112
          dst->destroy();
113
      }
Felix Abecassis's avatar
Felix Abecassis committed
114
      delete sit;
115
116
117
118
119
    }
  }

  // From the base automaton and the list of sets, build the minimal
  // resulting automaton
120
  sba_explicit_number* build_result(const tgba* a,
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
                                     std::list<hash_set*>& sets,
                                     hash_set* final)
  {
    // For each set, create a state in the resulting automaton.
    // For a state s, state_num[s] is the number of the state in the minimal
    // automaton.
    hash_map state_num;
    std::list<hash_set*>::iterator sit;
    unsigned num = 0;
    for (sit = sets.begin(); sit != sets.end(); ++sit)
    {
      hash_set::iterator hit;
      hash_set* h = *sit;
      for (hit = h->begin(); hit != h->end(); ++hit)
        state_num[*hit] = num;
      ++num;
    }
Pierre PARUTTO's avatar
Pierre PARUTTO committed
138
    typedef state_explicit_number::transition trs;
139
    sba_explicit_number* res = new sba_explicit_number(a->get_dict());
140
141
    // For each transition in the initial automaton, add the corresponding
    // transition in res.
142
143
    if (!final->empty())
      res->declare_acceptance_condition(ltl::constant::true_instance());
144
145
146
147
    for (sit = sets.begin(); sit != sets.end(); ++sit)
    {
      hash_set::iterator hit;
      hash_set* h = *sit;
148
149
150
151
152
153
154
155
156

      // Pick one state.
      const state* src = *h->begin();
      unsigned src_num = state_num[src];
      bool accepting = (final->find(src) != final->end());

      // Connect it to all destinations.
      tgba_succ_iterator* succit = a->succ_iter(src);
      for (succit->first(); !succit->done(); succit->next())
157
        {
Felix Abecassis's avatar
Felix Abecassis committed
158
          const state* dst = succit->current_state();
159
	  hash_map::const_iterator i = state_num.find(dst);
160
          dst->destroy();
161
162
163
	  if (i == state_num.end()) // Ignore useless destinations.
	    continue;
          trs* t = res->create_transition(src_num, i->second);
164
165
166
167
          res->add_conditions(t, succit->current_condition());
          if (accepting)
            res->add_acceptance_condition(t, ltl::constant::true_instance());
        }
168
      delete succit;
169
170
171
172
    }
    res->merge_transitions();
    const state* init_state = a->get_init_state();
    unsigned init_num = state_num[init_state];
173
    init_state->destroy();
174
175
176
177
    res->set_init_state(init_num);
    return res;
  }

178
179
180
181
182
183
184
185
186
187
188

  namespace
  {

    struct wdba_search_acc_loop : public bfs_steps
    {
      wdba_search_acc_loop(const tgba* det_a,
			   unsigned scc_n, scc_map& sm,
			   power_map& pm, const state* dest)
	: bfs_steps(det_a), scc_n(scc_n), sm(sm), pm(pm), dest(dest)
      {
189
	seen(dest);
190
191
192
193
194
      }

      virtual const state*
      filter(const state* s)
      {
195
	s = seen(s);
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
	if (sm.scc_of_state(s) != scc_n)
	  return 0;
	return s;
      }

      virtual bool
      match(tgba_run::step&, const state* to)
      {
	return to == dest;
      }

      unsigned scc_n;
      scc_map& sm;
      power_map& pm;
      const state* dest;
211
      state_unicity_table seen;
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    };


    bool
    wdba_scc_is_accepting(const tgba_explicit_number* det_a, unsigned scc_n,
			  const tgba* orig_a, scc_map& sm, power_map& pm)
    {
      // Get some state from the SCC #n.
      const state* start = sm.one_state_of(scc_n)->clone();

      // Find a loop around START in SCC #n.
      wdba_search_acc_loop wsal(det_a, scc_n, sm, pm, start);
      tgba_run::steps loop;
      const state* reached = wsal.search(start, loop);
      assert(reached == start);
      (void)reached;

      // Build an automaton representing this loop.
      tgba_explicit_number loop_a(det_a->get_dict());
      tgba_run::steps::const_iterator i;
      int loop_size = loop.size();
      int n;
      for (n = 1, i = loop.begin(); n < loop_size; ++n, ++i)
	{
	  loop_a.create_transition(n - 1, n)->condition = i->label;
237
	  i->s->destroy();
238
239
240
	}
      assert(i != loop.end());
      loop_a.create_transition(n - 1, 0)->condition = i->label;
241
      i->s->destroy();
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
      assert(++i == loop.end());

      const state* loop_a_init = loop_a.get_init_state();
      assert(loop_a.get_label(loop_a_init) == 0);

      // Check if the loop is accepting in the original automaton.
      bool accepting = false;

      // Iterate on each original state corresponding to start.
      const power_map::power_state& ps = pm.states_of(det_a->get_label(start));
      for (power_map::power_state::const_iterator it = ps.begin();
	   it != ps.end() && !accepting; ++it)
	{
	  // Contrustruct a product between
	  // LOOP_A, and ORIG_A starting in *IT.

	  tgba* p = new tgba_product_init(&loop_a, orig_a,
					  loop_a_init, *it);

	  emptiness_check* ec = couvreur99(p);
	  emptiness_check_result* res = ec->check();

	  if (res)
	    accepting = true;
	  delete res;
	  delete ec;
	  delete p;
	}

271
      loop_a_init->destroy();
272
273
274
275
276
      return accepting;
    }

  }

277
278
  sba_explicit_number* minimize_dfa(const tgba_explicit_number* det_a,
				    hash_set* final, hash_set* non_final)
279
  {
280
281
282
    typedef std::list<hash_set*> partition_t;
    partition_t cur_run;
    partition_t next_run;
283

284
285
    // The list of equivalent states.
    partition_t done;
286

287
    hash_map state_set_map;
288

289
290
    // Size of det_a
    unsigned size = final->size() + non_final->size();
291
292
    // Use bdd variables to number sets.  set_num is the first variable
    // available.
293
294
    unsigned set_num =
      det_a->get_dict()->register_anonymous_variables(size, det_a);
295
296
297
298
299
300

    std::set<int> free_var;
    for (unsigned i = set_num; i < set_num + size; ++i)
      free_var.insert(i);
    std::map<int, int> used_var;

Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
301
302
    hash_set* final_copy;

303
304
305
306
307
308
    if (!final->empty())
      {
	unsigned s = final->size();
	used_var[set_num] = s;
	free_var.erase(set_num);
	if (s > 1)
309
	  cur_run.push_back(final);
310
311
312
313
314
	else
	  done.push_back(final);
	for (hash_set::const_iterator i = final->begin();
	     i != final->end(); ++i)
	  state_set_map[*i] = set_num;
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
315
316

	final_copy = new hash_set(*final);
317
      }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
318
319
320
321
322
    else
      {
	final_copy = final;
      }

323
324
325
326
327
328
329
    if (!non_final->empty())
      {
	unsigned s = non_final->size();
	unsigned num = set_num + 1;
	used_var[num] = s;
	free_var.erase(num);
	if (s > 1)
330
	  cur_run.push_back(non_final);
331
332
333
334
335
336
	else
	  done.push_back(non_final);
	for (hash_set::const_iterator i = non_final->begin();
	     i != non_final->end(); ++i)
	  state_set_map[*i] = num;
      }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
337
338
339
340
    else
      {
	delete non_final;
      }
341

342
343
    // A bdd_states_map is a list of formulae (in a BDD form) associated with a
    // destination set of states.
344
345
346
347
348
    typedef std::map<bdd, hash_set*, bdd_less_than> bdd_states_map;

    bool did_split = true;

    while (did_split)
349
      {
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
	did_split = false;
	while (!cur_run.empty())
	  {
	    // Get a set to process.
	    hash_set* cur = cur_run.front();
	    cur_run.pop_front();

	    trace << "processing " << format_hash_set(cur, det_a) << std::endl;

	    hash_set::iterator hi;
	    bdd_states_map bdd_map;
	    for (hi = cur->begin(); hi != cur->end(); ++hi)
	      {
		const state* src = *hi;
		bdd f = bddfalse;
		tgba_succ_iterator* si = det_a->succ_iter(src);
		for (si->first(); !si->done(); si->next())
		  {
		    const state* dst = si->current_state();
369
		    hash_map::const_iterator i = state_set_map.find(dst);
370
		    dst->destroy();
371
372
373
374
375
376
377
378
379
		    if (i == state_set_map.end())
		      // The destination state is not in our
		      // partition.  This can happen if the initial
		      // FINAL and NON_FINAL supplied to the algorithm
		      // do not cover the whole automaton (because we
		      // want to ignore some useless states).  Simply
		      // ignore these states here.
		      continue;
		    f |= (bdd_ithvar(i->second) & si->current_condition());
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
		  }
		delete si;

		// Have we already seen this formula ?
		bdd_states_map::iterator bsi = bdd_map.find(f);
		if (bsi == bdd_map.end())
		  {
		    // No, create a new set.
		    hash_set* new_set = new hash_set;
		    new_set->insert(src);
		    bdd_map[f] = new_set;
		  }
		else
		  {
		    // Yes, add the current state to the set.
		    bsi->second->insert(src);
		  }
	      }

	    bdd_states_map::iterator bsi = bdd_map.begin();
	    if (bdd_map.size() == 1)
	      {
		// The set was not split.
		trace << "set " << format_hash_set(bsi->second, det_a)
		      << " was not split" << std::endl;
		next_run.push_back(bsi->second);
	      }
	    else
	      {
409
		did_split = true;
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
		for (; bsi != bdd_map.end(); ++bsi)
		  {
		    hash_set* set = bsi->second;
		    // Free the number associated to these states.
		    unsigned num = state_set_map[*set->begin()];
		    assert(used_var.find(num) != used_var.end());
		    unsigned left = (used_var[num] -= set->size());
		    // Make sure LEFT does not become negative (hence bigger
		    // than SIZE when read as unsigned)
		    assert(left < size);
		    if (left == 0)
		      {
			used_var.erase(num);
			free_var.insert(num);
		      }
		    // Pick a free number
		    assert(!free_var.empty());
		    num = *free_var.begin();
		    free_var.erase(free_var.begin());
		    used_var[num] = set->size();
		    for (hash_set::iterator hit = set->begin();
			 hit != set->end(); ++hit)
		      state_set_map[*hit] = num;
		    // Trivial sets can't be splitted any further.
		    if (set->size() == 1)
		      {
			trace << "set " << format_hash_set(set, det_a)
			      << " is minimal" << std::endl;
			done.push_back(set);
		      }
		    else
		      {
			trace << "set " << format_hash_set(set, det_a)
			      << " should be processed further" << std::endl;
			next_run.push_back(set);
		      }
		  }
	      }
	    delete cur;
	  }
	if (did_split)
	  trace << "splitting did occur during this pass." << std::endl;
	else
	  trace << "splitting did not occur during this pass." << std::endl;
	std::swap(cur_run, next_run);
455
      }
456
457
458
459
460
461
462
463
464

    done.splice(done.end(), cur_run);

#ifdef TRACE
    trace << "Final partition: ";
    for (partition_t::const_iterator i = done.begin(); i != done.end(); ++i)
      trace << format_hash_set(*i, det_a) << " ";
    trace << std::endl;
#endif
Felix Abecassis's avatar
Felix Abecassis committed
465
466

    // Build the result.
467
    sba_explicit_number* res = build_result(det_a, done, final_copy);
Felix Abecassis's avatar
Felix Abecassis committed
468
469
470
471

    // Free all the allocated memory.
    delete final_copy;
    hash_map::iterator hit;
472
473
474
    for (hit = state_set_map.begin(); hit != state_set_map.end();)
      {
	hash_map::iterator old = hit++;
475
	old->first->destroy();
476
      }
Felix Abecassis's avatar
Felix Abecassis committed
477
478
479
480
481
    std::list<hash_set*>::iterator it;
    for (it = done.begin(); it != done.end(); ++it)
      delete *it;
    delete det_a;

482
483
    return res;
  }
484

485

486
  sba_explicit_number* minimize_monitor(const tgba* a)
487
488
  {
    hash_set* final = new hash_set;
489
    hash_set* non_final = new hash_set;
490
491
492
493
494
495
    tgba_explicit_number* det_a;

    {
      power_map pm;
      det_a = tgba_powerset(a, pm);
    }
496
497

    // non_final contain all states.
498
    // final is empty: there is no acceptance condition
499
    build_state_set(det_a, non_final);
500
501

    return minimize_dfa(det_a, final, non_final);
502
503
  }

504
  sba_explicit_number* minimize_wdba(const tgba* a)
505
506
  {
    hash_set* final = new hash_set;
507
508
    hash_set* non_final = new hash_set;

509
510
511
512
513
514
    tgba_explicit_number* det_a;

    {
      power_map pm;
      det_a = tgba_powerset(a, pm);

515
516
517
518
519
      // For each SCC of the deterministic automaton, determine if it
      // is accepting or not.

      // This corresponds to the algorithm in Fig. 1 of "Efficient
      // minimization of deterministic weak omega-automata" written by
520
      // Christof Löding and published in Information Processing
521
522
523
524
525
      // Letters 79 (2001) pp 105--109.

      // We also keep track of whether an SCC is useless
      // (i.e., it is not the start of any accepting word).

526
527
528
      scc_map sm(det_a);
      sm.build_map();
      unsigned scc_count = sm.scc_count();
529
530
      // SCC that have been marked as useless.
      std::vector<bool> useless(scc_count);
531
532
533
534
535
536
537
      // The "color".  Even number correspond to
      // accepting SCCs.
      std::vector<unsigned> d(scc_count);

      // An even number larger than scc_count.
      unsigned k = (scc_count | 1) + 1;

538
      // SCC are numbered in topological order
539
      // (but in the reverse order as Löding's)
540
      for (unsigned m = 0; m < scc_count; ++m)
541
	{
542
	  bool is_useless = true;
543
544
	  bool transient = sm.trivial(m);
	  const scc_map::succ_type& succ = sm.succ(m);
545

546
	  if (transient && succ.empty())
547
	    {
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
	      // A trivial SCC without successor is useless.
	      useless[m] = true;
	      d[m] = k - 1;
	      continue;
	    }

	  // Compute the minimum color l of the successors.
	  // Also SCCs are useless if all their successor are
	  // useless.
	  unsigned l = k;
	  for (scc_map::succ_type::const_iterator j = succ.begin();
	       j != succ.end(); ++j)
	    {
	      is_useless &= useless[j->first];
	      unsigned dj = d[j->first];
	      if (dj < l)
		l = dj;
	    }

	  if (transient)
	    {
	      d[m] = l;
570
571
572
573
	    }
	  else
	    {
	      // Regular SCCs are accepting if any of their loop
574
575
	      // corresponds to an accepted word in the original
	      // automaton.
576
	      if (wdba_scc_is_accepting(det_a, m, a, sm, pm))
577
578
		{
		  is_useless = false;
579
		  d[m] = l & ~1; // largest even number inferior or equal
580
581
582
		}
	      else
		{
583
		  d[m] = (l - 1) | 1; // largest odd number inferior or equal
584
		}
585
	    }
586

587
	  useless[m] = is_useless;
588

589
590
	  if (!is_useless)
	    {
591
	      hash_set* dest_set = (d[m] & 1) ? non_final : final;
592
	      const std::list<const state*>& l = sm.states_of(m);
593
594
595
596
	      std::list<const state*>::const_iterator il;
	      for (il = l.begin(); il != l.end(); ++il)
		dest_set->insert((*il)->clone());
	    }
597
598
599
	}
    }

600
    return minimize_dfa(det_a, final, non_final);
601
602
  }

603
  tgba*
604
  minimize_obligation(const tgba* aut_f,
605
606
		      const ltl::formula* f, const tgba* aut_neg_f,
		      bool reject_bigger)
607
  {
608
    sba_explicit_number* min_aut_f = minimize_wdba(aut_f);
609

610
611
612
    if (reject_bigger)
      {
	// Abort if min_aut_f has more states than aut_f.
613
614
	unsigned orig_states = count_states(aut_f);
	if (orig_states < min_aut_f->num_states())
615
616
617
618
619
620
	  {
	    delete min_aut_f;
	    return const_cast<tgba*>(aut_f);
	  }
      }

621
622
623
624
625
    // if f is a syntactic obligation formula, the WDBA minimization
    // must be correct.
    if (f && f->is_syntactic_obligation())
      return min_aut_f;

626
    // If aut_f is a guarantee automaton, the WDBA minimization must be
627
    // correct.
628
    if (is_guarantee_automaton(aut_f))
629
      return min_aut_f;
630
631
632
633
634
635

    const tgba* to_free = 0;

    // Build negation automaton if not supplied.
    if (!aut_neg_f)
      {
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
	if (f)
	  {
	    // If we know the formula, simply build the automaton for
	    // its negation.
	    const ltl::formula* neg_f =
	      ltl::unop::instance(ltl::unop::Not, f->clone());
	    aut_neg_f = ltl_to_tgba_fm(neg_f, aut_f->get_dict());
	    neg_f->destroy();

	    // Remove useless SCCs.
	    const tgba* tmp = scc_filter(aut_neg_f, true);
	    delete aut_neg_f;
	    to_free = aut_neg_f = tmp;
	  }
	else if (is_deterministic(aut_f))
	  {
	    // If the automaton is deterministic, complementing is
	    // easy.
654
	    to_free = aut_neg_f = dtgba_complement(aut_f);
655
656
657
658
659
660
661
	  }
	else
	  {
	    // Otherwise, we cannot check if the minimization is safe.
	    delete min_aut_f;
	    return 0;
	  }
662
663
      }

664
    // If the negation is a guarantee automaton, then the
665
    // minimization is correct.
666
    if (is_guarantee_automaton(aut_neg_f))
667
668
669
670
671
672
673
674
675
676
677
678
679
680
      {
	delete to_free;
	return min_aut_f;
      }

    bool ok = false;

    tgba* p = new tgba_product(min_aut_f, aut_neg_f);
    emptiness_check* ec = couvreur99(p);
    emptiness_check_result* res = ec->check();
    if (!res)
      {
	delete ec;
	delete p;
681

682
	// Complement the minimized WDBA.
683
684
685
	tgba* neg_min_aut_f = wdba_complement(min_aut_f);

	tgba* p = new tgba_product(aut_f, neg_min_aut_f);
686
687
688
689
	emptiness_check* ec = couvreur99(p);
	res = ec->check();

	if (!res)
690
691
692
693
694
	  {
	    // Finally, we are now sure that it was safe
	    // to minimize the automaton.
	    ok = true;
	  }
695
696
697
698

	delete res;
	delete ec;
	delete p;
699
	delete neg_min_aut_f;
700
701
702
703
704
705
706
707
708
709
710
711
      }
    else
      {
	delete res;
	delete ec;
	delete p;
      }
    delete to_free;

    if (ok)
      return min_aut_f;
    delete min_aut_f;
712
    return const_cast<tgba*>(aut_f);
713
  }
714
}