ltl2tgba_fm.cc 39.4 KB
Newer Older
1
2
3
// Copyright (C) 2008, 2009, 2010 Laboratoire de Recherche et
// Dveloppement de l'Epita (LRDE).
// Copyright (C) 2003, 2004, 2005, 2006 Laboratoire
4
5
// d'Informatique de Paris 6 (LIP6), dpartement Systmes Rpartis
// Coopratifs (SRC), Universit Pierre et Marie Curie.
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with Spot; see the file COPYING.  If not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.

24
#include "misc/hash.hh"
25
#include "misc/bddalloc.hh"
26
#include "misc/bddlt.hh"
27
#include "misc/minato.hh"
28
29
#include "ltlast/visitor.hh"
#include "ltlast/allnodes.hh"
30
31
32
#include "ltlvisit/lunabbrev.hh"
#include "ltlvisit/nenoform.hh"
#include "ltlvisit/tostring.hh"
33
#include "ltlvisit/postfix.hh"
34
#include "ltlvisit/apcollect.hh"
35
36
#include "ltlvisit/mark.hh"
#include "ltlvisit/tostring.hh"
37
#include <cassert>
38
#include <memory>
39
#include "ltl2tgba_fm.hh"
40
#include "ltlvisit/contain.hh"
41
42
#include "ltlvisit/consterm.hh"
#include "tgba/bddprint.hh"
43
44
45
46
47
48
49
50

namespace spot
{
  using namespace ltl;

  namespace
  {

51
52
    // Helper dictionary.  We represent formulae using BDDs to
    // simplify them, and then translate BDDs back into formulae.
53
54
55
56
57
    //
    // The name of the variables are inspired from Couvreur's FM paper.
    //   "a" variables are promises (written "a" in the paper)
    //   "next" variables are X's operands (the "r_X" variables from the paper)
    //   "var" variables are atomic propositions.
58
    class translate_dict
59
60
61
    {
    public:

62
63
      translate_dict(bdd_dict* dict)
	: dict(dict),
64
65
66
67
68
69
70
71
72
73
	  a_set(bddtrue),
	  var_set(bddtrue),
	  next_set(bddtrue)
      {
      }

      ~translate_dict()
      {
	fv_map::iterator i;
	for (i = next_map.begin(); i != next_map.end(); ++i)
74
	  i->first->destroy();
75
	dict->unregister_all_my_variables(this);
76
77
      }

78
79
      bdd_dict* dict;

80
81
      typedef bdd_dict::fv_map fv_map;
      typedef bdd_dict::vf_map vf_map;
82
83
84
85
86
87
88
89
90

      fv_map next_map;	       ///< Maps "Next" variables to BDD variables
      vf_map next_formula_map; ///< Maps BDD variables to "Next" variables

      bdd a_set;
      bdd var_set;
      bdd next_set;

      int
91
      register_proposition(const formula* f)
92
      {
93
	int num = dict->register_proposition(f, this);
94
95
96
97
98
	var_set &= bdd_ithvar(num);
	return num;
      }

      int
99
      register_a_variable(const formula* f)
100
      {
101
	int num = dict->register_acceptance_variable(f, this);
102
103
104
105
106
	a_set &= bdd_ithvar(num);
	return num;
      }

      int
107
      register_next_variable(const formula* f)
108
109
110
111
112
113
114
115
116
117
      {
	int num;
	// Do not build a Next variable that already exists.
	fv_map::iterator sii = next_map.find(f);
	if (sii != next_map.end())
	  {
	    num = sii->second;
	  }
	else
	  {
118
	    f = f->clone();
119
	    num = dict->register_anonymous_variables(1, this);
120
121
122
123
124
125
126
	    next_map[f] = num;
	    next_formula_map[num] = f;
	  }
	next_set &= bdd_ithvar(num);
	return num;
      }

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
      std::ostream&
      dump(std::ostream& os) const
      {
	fv_map::const_iterator fi;
	os << "Next Variables:" << std::endl;
	for (fi = next_map.begin(); fi != next_map.end(); ++fi)
	{
	  os << "  " << fi->second << ": Next[";
	  to_string(fi->first, os) << "]" << std::endl;
	}
	os << "Shared Dict:" << std::endl;
	dict->dump(os);
	return os;
      }

142
      formula*
143
144
145
146
      var_to_formula(int var) const
      {
	vf_map::const_iterator isi = next_formula_map.find(var);
	if (isi != next_formula_map.end())
147
	  return isi->second->clone();
148
149
	isi = dict->acc_formula_map.find(var);
	if (isi != dict->acc_formula_map.end())
150
	  return isi->second->clone();
151
152
	isi = dict->var_formula_map.find(var);
	if (isi != dict->var_formula_map.end())
153
	  return isi->second->clone();
154
	assert(0);
155
156
157
	// Never reached, but some GCC versions complain about
	// a missing return otherwise.
	return 0;
158
159
      }

160
      formula*
161
      conj_bdd_to_formula(bdd b) const
162
163
      {
	if (b == bddfalse)
164
165
	  return constant::false_instance();
	multop::vec* v = new multop::vec;
166
167
168
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
169
	    formula* res = var_to_formula(var);
170
171
172
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
173
		res = unop::instance(unop::Not, res);
174
175
176
177
		b = bdd_low(b);
	      }
	    else
	      {
178
		assert(bdd_low(b) == bddfalse);
179
180
181
182
183
		b = high;
	      }
	    assert(b != bddfalse);
	    v->push_back(res);
	  }
184
	return multop::instance(multop::And, v);
185
186
      }

187
      formula*
188
      bdd_to_formula(bdd f)
189
      {
190
	if (f == bddfalse)
191
	  return constant::false_instance();
192

193
194
195
196
197
198
199
200
201
	multop::vec* v = new multop::vec;

	minato_isop isop(f);
	bdd cube;
	while ((cube = isop.next()) != bddfalse)
	  v->push_back(conj_bdd_to_formula(cube));

	return multop::instance(multop::Or, v);
      }
202
203

      void
204
      conj_bdd_to_acc(tgba_explicit_formula* a, bdd b,
Pierre PARUTTO's avatar
Pierre PARUTTO committed
205
		      state_explicit_formula::transition* t)
206
207
208
209
210
211
212
213
      {
	assert(b != bddfalse);
	while (b != bddtrue)
	  {
	    int var = bdd_var(b);
	    bdd high = bdd_high(b);
	    if (high == bddfalse)
	      {
214
		// Simply ignore negated acceptance variables.
215
216
217
218
		b = bdd_low(b);
	      }
	    else
	      {
219
		formula* ac = var_to_formula(var);
220

221
		if (!a->has_acceptance_condition(ac))
222
		  a->declare_acceptance_condition(ac->clone());
223
		a->add_acceptance_condition(t, ac);
224
225
226
227
228
229
230
231
		b = high;
	      }
	    assert(b != bddfalse);
	  }
      }
    };


232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    // Debugging function.
    std::ostream&
    trace_ltl_bdd(const translate_dict& d, bdd f)
    {
      minato_isop isop(f);
      bdd cube;
      while ((cube = isop.next()) != bddfalse)
	{
	  bdd label = bdd_exist(cube, d.next_set);
	  bdd dest_bdd = bdd_existcomp(cube, d.next_set);
	  const formula* dest = d.conj_bdd_to_formula(dest_bdd);
	  bdd_print_set(std::cerr, d.dict, label) << " => "
						  << to_string(dest)
						  << std::endl;
	  dest->destroy();
	}
      return std::cerr;
    }


252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

    // Gather all promises of a formula.  These are the
    // right-hand sides of U or F operators.
    class ltl_promise_visitor: public postfix_visitor
    {
    public:
      ltl_promise_visitor(translate_dict& dict)
	: dict_(dict), res_(bddtrue)
      {
      }

      virtual
      ~ltl_promise_visitor()
      {
      }

      bdd
      result() const
      {
	return res_;
      }

      using postfix_visitor::doit;

      virtual void
      doit(unop* node)
      {
	if (node->op() == unop::F)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->child()));
      }

      virtual void
      doit(binop* node)
      {
	if (node->op() == binop::U)
	  res_ &= bdd_ithvar(dict_.register_a_variable(node->second()));
      }

    private:
      translate_dict& dict_;
      bdd res_;
    };

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
    // Rewrite rule for rational operators.
    class ratexp_trad_visitor: public const_visitor
    {
    public:
      ratexp_trad_visitor(translate_dict& dict,
			  formula* to_concat = 0)
	: dict_(dict), to_concat_(to_concat)
      {
      }

      virtual
      ~ratexp_trad_visitor()
      {
	if (to_concat_)
	  to_concat_->destroy();
      }

      bdd
      result() const
      {
	return res_;
      }

      bdd next_to_concat()
      {
	if (!to_concat_)
	  to_concat_ = constant::empty_word_instance();
	int x = dict_.register_next_variable(to_concat_);
	return bdd_ithvar(x);
      }

      bdd now_to_concat()
      {
	if (to_concat_)
	  {
	    if (to_concat_ == constant::empty_word_instance())
	      return bddfalse;
	    bdd n = recurse(to_concat_);
	    return n;
	  }
	else
	  {
	    return bddfalse;
	  }
      }

      void
      visit(const atomic_prop* node)
      {
	res_ = (bdd_ithvar(dict_.register_proposition(node))
		& next_to_concat());
      }

      void
      visit(const constant* node)
      {
	switch (node->val())
	  {
	  case constant::True:
	    res_ = next_to_concat();
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
	  case constant::EmptyWord:
	    res_ = now_to_concat();
	    return;
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
	switch (node->op())
	  {
	  case unop::F:
	  case unop::G:
	  case unop::Not:
	  case unop::X:
	  case unop::Finish:
	    assert(!"not a rational operator");
	    return;
	  case unop::Star:
	    {
	      formula* f;
	      if (to_concat_)
		f = multop::instance(multop::Concat, node->clone(),
				     to_concat_->clone());
	      else
		f = node->clone();

	      res_ = recurse(node->child(), f) | now_to_concat();
	      return;
	    }
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const binop*)
      {
	assert(!"not a rational operator");
      }

      void
      visit(const automatop*)
      {
	assert(!"not a rational operator");
      }

      void
      visit(const multop* node)
      {
	switch (node->op())
	  {
	  case multop::And:
	    {
	      res_ = bddtrue;
	      unsigned s = node->size();
	      for (unsigned n = 0; n < s; ++n)
	      {
		bdd res = recurse(node->nth(n));
		// trace_ltl_bdd(dict_, res);
		res_ &= res;
	      }

	      //std::cerr << "Pre-Concat:" << std::endl;
	      //trace_ltl_bdd(dict_, res_);

	      if (to_concat_)
		{
		  // If we have translated (a* & b*) in (a* & b*);c, we
		  // have to append ";c" to all destinations.

		  minato_isop isop(res_);
		  bdd cube;
		  res_ = bddfalse;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		      formula* dest = dict_.conj_bdd_to_formula(dest_bdd);
		      formula* dest2;
		      int x;
		      if (dest == constant::empty_word_instance())
			{
			  res_ |= label & next_to_concat();
			}
		      else
			{
			  dest2 = multop::instance(multop::Concat, dest,
						   to_concat_->clone());
			  if (dest2 != constant::false_instance())
			    {
			      x = dict_.register_next_variable(dest2);
			      dest2->destroy();
			      res_ |= label & bdd_ithvar(x);
			    }
			  if (constant_term_as_bool(node))
			    res_ |= label & next_to_concat();
			}
		    }
		}

	      break;
	    }
	  case multop::Or:
	    {
	      res_ = bddfalse;
	      unsigned s = node->size();
	      if (to_concat_)
		for (unsigned n = 0; n < s; ++n)
		  res_ |= recurse(node->nth(n), to_concat_->clone());
	      else
		for (unsigned n = 0; n < s; ++n)
		  res_ |= recurse(node->nth(n));
	      break;
	    }
	  case multop::Concat:
	    {
	      multop::vec* v = new multop::vec;
	      unsigned s = node->size();
	      v->reserve(s);
	      for (unsigned n = 1; n < s; ++n)
		v->push_back(node->nth(n)->clone());
	      if (to_concat_)
		v->push_back(to_concat_->clone());
	      res_ = recurse(node->nth(0),
			     multop::instance(multop::Concat, v));
	      break;
	    }
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
	  case multop::Fusion:
	    {
	      assert(node->size() >= 2);

	      // the head
	      bdd res = recurse(node->nth(0));

	      // the tail
	      multop::vec* v = new multop::vec;
	      unsigned s = node->size();
	      v->reserve(s - 1);
	      for (unsigned n = 1; n < s; ++n)
		v->push_back(node->nth(n)->clone());
	      formula* tail = multop::instance(multop::Fusion, v);
	      bdd tail_bdd;
	      bool tail_computed = false;

	      //trace_ltl_bdd(dict_, res);

	      minato_isop isop(res);
	      bdd cube;
	      res_ = bddfalse;
	      while ((cube = isop.next()) != bddfalse)
		{
		  bdd label = bdd_exist(cube, dict_.next_set);
		  bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		  formula* dest = dict_.conj_bdd_to_formula(dest_bdd);

		  if (constant_term_as_bool(dest))
		    {
		      // The destination is a final state.  Make sure we
		      // can also exit if tail is satisfied.
		      if (!tail_computed)
			{
			  tail_bdd = recurse(tail,
					     to_concat_ ?
					     to_concat_->clone() : 0);
			  tail_computed = true;
			}
		      res_ |= label & tail_bdd;
		    }

		  if (dynamic_cast<constant*>(dest) == 0)
		    {
		      // If the destination is not a constant, it
		      // means it can have successors.  Fusion the
		      // tail and append anything to concatenate.
		      formula* dest2 = multop::instance(multop::Fusion, dest,
							tail->clone());
		      if (to_concat_)
			 dest2 = multop::instance(multop::Concat, dest2,
						 to_concat_->clone());
		      if (dest2 != constant::false_instance())
			{
			  int x = dict_.register_next_variable(dest2);
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		    }
		}

	      tail->destroy();
	      break;
	    }
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
	  }
      }

      bdd
      recurse(const formula* f, formula* to_concat = 0)
      {
	ratexp_trad_visitor v(dict_, to_concat);
	f->accept(v);
	return v.result();
      }


    private:
      translate_dict& dict_;
      bdd res_;
      formula* to_concat_;
    };

571

572
    // The rewrite rules used here are adapted from Jean-Michel
573
    // Couvreur's FM paper, augmented to support rational operators.
574
575
576
    class ltl_trad_visitor: public const_visitor
    {
    public:
577
578
579
580
      ltl_trad_visitor(translate_dict& dict, bool mark_all = false,
		       bool exprop = false)
	: dict_(dict), rat_seen_(false), has_marked_(false),
	  mark_all_(mark_all), exprop_(exprop)
581
582
583
584
585
586
587
588
      {
      }

      virtual
      ~ltl_trad_visitor()
      {
      }

589
590
591
592
593
594
595
596
      void
      reset(bool mark_all)
      {
	rat_seen_ = false;
	has_marked_ = false;
	mark_all_ = mark_all;
      }

597
598
      bdd
      result() const
599
600
601
602
      {
	return res_;
      }

603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
      const translate_dict&
      get_dict() const
      {
	return dict_;
      }

      bool
      has_rational() const
      {
	return rat_seen_;
      }

      bool
      has_marked() const
      {
	return has_marked_;
      }

621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
      void
      visit(const atomic_prop* node)
      {
	res_ = bdd_ithvar(dict_.register_proposition(node));
      }

      void
      visit(const constant* node)
      {
	switch (node->val())
	  {
	  case constant::True:
	    res_ = bddtrue;
	    return;
	  case constant::False:
	    res_ = bddfalse;
	    return;
638
	  case constant::EmptyWord:
639
640
	    assert(!"Not an LTL operator");
	    return;
641
642
643
644
645
646
647
648
649
650
651
652
653
	  }
	/* Unreachable code.  */
	assert(0);
      }

      void
      visit(const unop* node)
      {
	switch (node->op())
	  {
	  case unop::F:
	    {
	      // r(Fy) = r(y) + a(y)r(XFy)
654
655
656
	      const formula* child = node->child();
	      bdd y = recurse(child);
	      int a = dict_.register_a_variable(child);
657
658
	      int x = dict_.register_next_variable(node);
	      res_ = y | (bdd_ithvar(a) & bdd_ithvar(x));
659
	      break;
660
661
662
	    }
	  case unop::G:
	    {
663
664
665
666
667
668
669
670
671
672
673
674
	      // The paper suggests that we optimize GFy
	      // as
	      //   r(GFy) = (r(y) + a(y))r(XGFy)
	      // instead of
	      //   r(GFy) = (r(y) + a(y)r(XFy)).r(XGFy)
	      // but this is just a particular case
	      // of the "merge all states with the same
	      // symbolic rewriting" optimization we do later.
	      // (r(Fy).r(GFy) and r(GFy) have the same symbolic
	      // rewriting.)  Let's keep things simple here.

	      // r(Gy) = r(y)r(XGy)
675
	      const formula* child = node->child();
676
	      int x = dict_.register_next_variable(node);
677
678
	      bdd y = recurse(child);
	      res_ = y & bdd_ithvar(x);
679
	      break;
680
681
682
	    }
	  case unop::Not:
	    {
683
	      // r(!y) = !r(y)
684
	      res_ = bdd_not(recurse(node->child()));
685
	      break;
686
687
688
	    }
	  case unop::X:
	    {
689
	      // r(Xy) = Next[y]
690
691
	      int x = dict_.register_next_variable(node->child());
	      res_ = bdd_ithvar(x);
692
	      break;
693
	    }
694
695
	  case unop::Finish:
	    assert(!"unsupported operator");
696
697
698
699
	    break;
	  case unop::Star:
	    assert(!"Not an LTL operator");
	    break;
700
701
702
703
704
705
	  }
      }

      void
      visit(const binop* node)
      {
706
	binop::type op = node->op();
707

708
	switch (op)
709
	  {
710
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
711
	  case binop::Xor:
712
713
714
715
716
717
	    {
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
	      res_ = bdd_apply(f1, f2, bddop_xor);
	      return;
	    }
718
	  case binop::Implies:
719
720
721
722
723
724
	    {
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
	      res_ = bdd_apply(f1, f2, bddop_imp);
	      return;
	    }
725
	  case binop::Equiv:
726
727
728
729
730
731
	    {
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
	      res_ = bdd_apply(f1, f2, bddop_biimp);
	      return;
	    }
732
733
	  case binop::U:
	    {
734
735
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
736
737
738
739
	      // r(f1 U f2) = r(f2) + a(f2)r(f1)r(X(f1 U f2))
	      int a = dict_.register_a_variable(node->second());
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (bdd_ithvar(a) & f1 & bdd_ithvar(x));
740
	      break;
741
	    }
742
743
	  case binop::W:
	    {
744
745
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
746
747
748
	      // r(f1 W f2) = r(f2) + r(f1)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = f2 | (f1 & bdd_ithvar(x));
749
	      break;
750
	    }
751
752
	  case binop::R:
	    {
753
754
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
755
756
757
	      // r(f1 R f2) = r(f1)r(f2) + r(f2)r(X(f1 U f2))
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (f2 & bdd_ithvar(x));
758
	      break;
759
	    }
760
761
	  case binop::M:
	    {
762
763
	      bdd f1 = recurse(node->first());
	      bdd f2 = recurse(node->second());
764
765
766
767
	      // r(f1 M f2) = r(f1)r(f2) + a(f1)r(f2)r(X(f1 M f2))
	      int a = dict_.register_a_variable(node->first());
	      int x = dict_.register_next_variable(node);
	      res_ = (f1 & f2) | (bdd_ithvar(a) & f2 & bdd_ithvar(x));
768
	      break;
769
	    }
770
771
772
	  case binop::EConcatMarked:
	    has_marked_ = true;
	    /* fall through */
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
773
	  case binop::EConcat:
774
775
	    rat_seen_ = true;
	    {
776
777
	      // Recognize f2 on transitions going to destinations
	      // that accept the empty word.
778
779
780
781
	      bdd f2 = recurse(node->second());
	      ratexp_trad_visitor v(dict_);
	      node->first()->accept(v);
	      bdd f1 = v.result();
782
	      res_ = bddfalse;
783
784
785
786
787
788
789

	      if (mark_all_)
		{
		  op = binop::EConcatMarked;
		  has_marked_ = true;
		}

790
	      if (exprop_)
791
		{
792
793
794
		  bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
		  bdd all_props = bdd_existcomp(f1, dict_.var_set);
		  while (all_props != bddfalse)
795
		    {
796
		      bdd label = bdd_satoneset(all_props, var_set, bddtrue);
797
798
799
800
801
802
803
804
805
		      all_props -= label;

		      formula* dest =
			dict_.bdd_to_formula(bdd_exist(f1 & label,
						       dict_.var_set));

		      const formula* dest2 =
			binop::instance(op, dest, node->second()->clone());

806
807
		      if (dest2 != constant::false_instance())
			{
808
			  int x = dict_.register_next_variable(dest2);
809
810
811
812
813
814
815
			  dest2->destroy();
			  res_ |= label & bdd_ithvar(x);
			}
		      if (constant_term_as_bool(dest))
			res_ |= label & f2;
		    }
		}
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
	      else
		{
		  minato_isop isop(f1);
		  bdd cube;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		      formula* dest = dict_.conj_bdd_to_formula(dest_bdd);

		      if (dest == constant::empty_word_instance())
			{
			  res_ |= label & f2;
			}
		      else
			{
			  formula* dest2 = binop::instance(op, dest,
						  node->second()->clone());
			  if (dest2 != constant::false_instance())
			    {
			      int x = dict_.register_next_variable(dest2);
			      dest2->destroy();
			      res_ |= label & bdd_ithvar(x);
			    }
			  if (constant_term_as_bool(dest))
			    res_ |= label & f2;
			}
		    }
		}
845
846
847
848
849
	    }
	    break;

	  case binop::UConcat:
	    {
850
851
852
	      // Transitions going to destinations accepting the empty
	      // word should recognize f2, and the automaton for f1
	      // should be understood as universal.
853
854
855
856
857
	      bdd f2 = recurse(node->second());
	      ratexp_trad_visitor v(dict_);
	      node->first()->accept(v);
	      bdd f1 = v.result();
	      res_ = bddtrue;
858
859

	      if (exprop_)
860
		{
861
862
863
864
865
866
		  bdd var_set = bdd_existcomp(bdd_support(f1), dict_.var_set);
		  bdd all_props = bdd_existcomp(f1, dict_.var_set);
		  while (all_props != bddfalse)
		    {
		      bdd label = bdd_satoneset(all_props, var_set, bddtrue);
		      all_props -= label;
867

868
869
870
		      formula* dest =
			dict_.bdd_to_formula(bdd_exist(f1 & label,
						       dict_.var_set));
871

872
873
874
875
		      formula* dest2 = binop::instance(op, dest,
						       node->second()->clone());
		      bdd udest =
			bdd_ithvar(dict_.register_next_variable(dest2));
876

877
878
		      if (constant_term_as_bool(dest))
			udest &= f2;
879

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
		      dest2->destroy();
		      label = bdd_apply(label, udest, bddop_imp);

		      res_ &= label;
		    }
		}
	      else
		{
		  minato_isop isop(f1);
		  bdd cube;
		  while ((cube = isop.next()) != bddfalse)
		    {
		      bdd label = bdd_exist(cube, dict_.next_set);
		      bdd dest_bdd = bdd_existcomp(cube, dict_.next_set);
		      formula* dest = dict_.conj_bdd_to_formula(dest_bdd);
		      formula* dest2;
		      bdd udest;

		      dest2 = binop::instance(op, dest,
					      node->second()->clone());
		      udest = bdd_ithvar(dict_.register_next_variable(dest2));

		      if (constant_term_as_bool(dest))
			udest &= f2;

		      dest2->destroy();
		      label = bdd_apply(label, udest, bddop_imp);

		      res_ &= label;
		    }
910
911
		}
	    }
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
912
	    break;
913
914
915
	  }
      }

916
917
918
919
920
921
      void
      visit(const automatop*)
      {
	assert(!"unsupported operator");
      }

922
923
924
925
926
927
      void
      visit(const multop* node)
      {
	switch (node->op())
	  {
	  case multop::And:
928
929
930
931
932
933
934
935
936
937
938
939
	    {
	      res_ = bddtrue;
	      unsigned s = node->size();
	      for (unsigned n = 0; n < s; ++n)
		{
		  bdd res = recurse(node->nth(n));
		  //std::cerr << "=== in And" << std::endl;
		  //trace_ltl_bdd(dict_, res);
		  res_ &= res;
		}
	      break;
	    }
940
	  case multop::Or:
941
942
943
944
945
946
947
	    {
	      res_ = bddfalse;
	      unsigned s = node->size();
	      for (unsigned n = 0; n < s; ++n)
		res_ |= recurse(node->nth(n));
	      break;
	    }
948
	  case multop::Concat:
949
	  case multop::Fusion:
950
951
	    assert(!"Not an LTL operator");
	    break;
952
	  }
953

954
955
956
957
958
      }

      bdd
      recurse(const formula* f)
      {
959
	ltl_trad_visitor v(dict_, mark_all_, exprop_);
960
	f->accept(v);
961
962
	rat_seen_ |= v.has_rational();
	has_marked_ |= v.has_marked();
963
964
965
966
967
968
969
	return v.result();
      }


    private:
      translate_dict& dict_;
      bdd res_;
970
971
972
      bool rat_seen_;
      bool has_marked_;
      bool mark_all_;
973
      bool exprop_;
974
975
    };

976

977
978
    // Check whether a formula has a R, W, or G operator at its
    // top-level (preceding logical operators do not count).
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
    class ltl_possible_fair_loop_visitor: public const_visitor
    {
    public:
      ltl_possible_fair_loop_visitor()
	: res_(false)
      {
      }

      virtual
      ~ltl_possible_fair_loop_visitor()
      {
      }

      bool
      result() const
      {
	return res_;
      }

      void
      visit(const atomic_prop*)
      {
      }

      void
      visit(const constant*)
      {
      }

      void
      visit(const unop* node)
      {
	if (node->op() == unop::G)
	  res_ = true;
      }

      void
      visit(const binop* node)
      {
	switch (node->op())
	  {
	    // r(f1 logical-op f2) = r(f1) logical-op r(f2)
	  case binop::Xor:
	  case binop::Implies:
	  case binop::Equiv:
	    node->first()->accept(*this);
	    if (!res_)
	      node->second()->accept(*this);
	    return;
	  case binop::U:
1029
	  case binop::M:
1030
1031
	    return;
	  case binop::R:
1032
	  case binop::W:
1033
1034
	    res_ = true;
	    return;
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1035
1036
	  case binop::UConcat:
	  case binop::EConcat:
1037
	  case binop::EConcatMarked:
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1038
	    node->second()->accept(*this);
1039
	    // FIXME: we might need to add Acc[1]
Alexandre Duret-Lutz's avatar
Alexandre Duret-Lutz committed
1040
	    return;
1041
1042
1043
1044
1045
	  }
	/* Unreachable code.  */
	assert(0);
      }

1046
1047
1048
1049
1050
1051
      void
      visit(const automatop*)
      {
	assert(!"unsupported operator");
      }

1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
      void
      visit(const multop* node)
      {
	unsigned s = node->size();
	for (unsigned n = 0; n < s && !res_; ++n)
	  {
	    node->nth(n)->accept(*this);
	  }
      }

    private:
      bool res_;
    };

    // Check whether a formula can be part of a fair loop.
    // Cache the result for efficiency.
    class possible_fair_loop_checker
    {
    public:
      bool
      check(const formula* f)
      {
1074
1075
	pfl_map::const_iterator i = pfl_.find(f);
	if (i != pfl_.end())
1076
1077
1078
1079
	  return i->second;
	ltl_possible_fair_loop_visitor v;
	f->accept(v);
	bool rel = v.result();
1080
	pfl_[f] = rel;
1081
1082
1083
1084
	return rel;
      }

    private:
1085
      typedef Sgi::hash_map<const formula*, bool, formula_ptr_hash> pfl_map;
1086
      pfl_map pfl_;
1087
1088
    };

1089
1090
1091
    class formula_canonizer
    {
    public:
1092
      formula_canonizer(translate_dict& d,
1093
1094
			bool fair_loop_approx, bdd all_promises, bool exprop)
	: v_(d, false, exprop),
1095
	  fair_loop_approx_(fair_loop_approx),
1096
1097
	  all_promises_(all_promises),
	  d_(d)
1098
1099
1100
1101
1102
      {
	// For cosmetics, register 1 initially, so the algorithm will
	// not register an equivalent formula first.
	b2f_[bddtrue] = constant::true_instance();
      }
1103

1104
1105
      ~formula_canonizer()
      {
1106
	while (!f2b_.empty())
1107
	  {
1108
1109
1110
	    formula_to_bdd_map::iterator i = f2b_.begin();
	    const formula* f = i->first;
	    f2b_.erase(i);
1111
	    f->destroy();
1112
	  }
1113
1114
      }

1115
1116
1117
1118
1119
1120
1121
1122
      struct translated
      {
	bdd symbolic;
	bool has_rational:1;
	bool has_marked:1;
      };

      const translated&
1123
      translate(const formula* f, bool* new_flag = 0)
1124
1125
1126
1127
1128
1129
      {
	// Use the cached result if available.
	formula_to_bdd_map::const_iterator i = f2b_.find(f);
	if (i != f2b_.end())
	  return i->second;

1130
1131
1132
	if (new_flag)
	  *new_flag = true;

1133
	// Perform the actual translation.
1134
	v_.reset(!has_mark(f));
1135
	f->accept(v_);
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
	translated t;
	t.symbolic = v_.result();
	t.has_rational = v_.has_rational();
	t.has_marked = v_.has_marked();

//	std::cerr << "-----" << std::endl;
//	std::cerr << "Formula: " << to_string(f) << std::endl;
//	std::cerr << "Rational: " << t.has_rational << std::endl;
//	std::cerr << "Marked: " << t.has_marked << std::endl;
//	std::cerr << "Mark all: " << !has_mark(f) << std::endl;
//	std::cerr << "Transitions:" << std::endl;
//	trace_ltl_bdd(v_.get_dict(), t.symbolic);

	if (t.has_rational)
	  {
	    bdd res = bddfalse;

	    minato_isop isop(t.symbolic);
	    bdd cube;
	    while ((cube = isop.next()) != bddfalse)
	      {
		bdd label = bdd_exist(cube, d_.next_set);
		bdd dest_bdd = bdd_existcomp(cube, d_.next_set);
		formula* dest =
		  d_.conj_bdd_to_formula(dest_bdd);

		// Handle a Miyano-Hayashi style unrolling for
		// rational operators.  Marked nodes correspond to
		// subformulae in the Miyano-Hayashi set.
		if (simplify_mark(dest))
		  {
		    // Make the promise that we will exit marked sets.
		    int a =
		      d_.register_a_variable(constant::true_instance());
		    label &= bdd_ithvar(a);
		  }
		else
		  {
		    // We have left marked operators, but still
		    // have other rational operator to check.
		    // Start a new marked cycle.
		    formula* dest2 = mark_concat_ops(dest);
		    dest->destroy();
		    dest = dest2;
		  }
		// Note that simplify_mark may have changed dest.
		dest_bdd = bdd_ithvar(d_.register_next_variable(dest));
		dest->destroy();
		res |= label & dest_bdd;
	      }
	    t.symbolic = res;
//	    std::cerr << "Marking rewriting:" << std::endl;
//	    trace_ltl_bdd(v_.get_dict(), t.symbolic);
	  }
1190
1191
1192
1193
1194
1195
1196
1197
1198

	// Apply the fair-loop approximation if requested.
	if (fair_loop_approx_)
	  {
	    // If the source cannot possibly be part of a fair
	    // loop, make all possible promises.
	    if (fair_loop_approx_
		&& f != constant::true_instance()
		&& !pflc_.check(f))
1199
	      t.symbolic &= all_promises_;
1200
1201
	  }

1202
	// Register the reverse mapping if it is not already done.
1203
1204
1205
1206
	if (b2f_.find(t.symbolic) == b2f_.end())
	  b2f_[t.symbolic] = f;

	return f2b_[f->clone()] = t;
1207
1208
1209
1210
1211
      }

      const formula*
      canonize(const formula* f)
      {
1212
	bool new_variable = false;
1213
	bdd b = translate(f, &new_variable).symbolic;
1214
1215

	bdd_to_formula_map::iterator i = b2f_.find(b);
1216
1217
	// Since we have just translated the formula, it is
	// necessarily in b2f_.
1218
1219
1220
	assert(i != b2f_.end());

	if (i->second != f)
1221
	  {
1222
	    // The translated bdd maps to an already seen formula.
1223
	    f->destroy();
1224
	    f = i->second->clone();
1225
	  }
1226
	return f;
1227
1228
      }

1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
    private:
      ltl_trad_visitor v_;
      // Map each formula to its associated bdd.  This speed things up when
      // the same formula is translated several times, which especially
      // occurs when canonize() is called repeatedly inside exprop.
      typedef std::map<bdd, const formula*, bdd_less_than> bdd_to_formula_map;
      bdd_to_formula_map b2f_;
      // Map a representation of successors to a canonical formula.
      // We do this because many formulae (such as `aR(bRc)' and
      // `aR(bRc).(bRc)') are equivalent, and are trivially identified
      // by looking at the set of successors.
1240
      typedef std::map<const formula*, translated> formula_to_bdd_map;
1241
      formula_to_bdd_map f2b_;
1242
1243
1244
1245

      possible_fair_loop_checker pflc_;
      bool fair_loop_approx_;
      bdd all_promises_;
1246
      translate_dict& d_;
1247
1248
1249
1250
1251
    };

  }

  typedef std::map<bdd, bdd, bdd_less_than> prom_map;
1252
  typedef Sgi::hash_map<const formula*, prom_map, formula_ptr_hash> dest_map;
1253
1254
1255
1256

  static void
  fill_dests(translate_dict& d, dest_map& dests, bdd label, const formula* dest)
  {
1257
    bdd conds = bdd_existcomp(label, d.var_set);
1258
1259
    bdd promises = bdd_existcomp(label, d.a_set);

1260
1261
1262
1263
1264
1265
1266
1267
    dest_map::iterator i = dests.find(dest);
    if (i == dests.end())
      {
	dests[dest][promises] = conds;
      }
    else
      {
	i->second[promises] |= conds;
1268
	dest->destroy();
1269
1270
1271
1272
      }
  }


Pierre PARUTTO's avatar
Pierre PARUTTO committed
1273
  tgba_explicit_formula*
1274
  ltl_to_tgba_fm(const formula* f, bdd_dict* dict,
1275
		 bool exprop, bool symb_merge, bool branching_postponement,
1276
		 bool fair_loop_approx, const atomic_prop_set* unobs,
1277
		 int reduce_ltl)
1278
1279
1280
1281
1282
  {
    // Normalize the formula.  We want all the negations on
    // the atomic propositions.  We also suppress logic
    // abbreviations such as <=>, =>, or XOR, since they
    // would involve negations at the BDD level.
1283
1284
    formula* f1 = unabbreviate_logic(f);
    formula* f2 = negative_normal_form(f1);
1285
    f1->destroy();
1286

1287
1288
1289
1290
    // Simplify the formula, if requested.
    if (reduce_ltl)
      {
	formula* tmp = reduce(f2, reduce_ltl);
1291
	f2->destroy();
1292
1293
1294
	f2 = tmp;
      }

1295
1296
    typedef std::set<const formula*, formula_ptr_less_than> set_type;
    set_type formulae_to_translate;
1297

1298
    translate_dict d(dict);
1299

1300
1301
    // Compute the set of all promises that can possibly occurre
    // inside the formula.
1302
    bdd all_promises = bddtrue;
1303
    if (fair_loop_approx || unobs)
1304
1305
1306
1307
1308
1309
      {
	ltl_promise_visitor pv(d);
	f2->accept(pv);
	all_promises = pv.result();
      }

1310
    formula_canonizer fc(d, fair_loop_approx, all_promises, exprop);
1311

1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
    // These are used when atomic propositions are interpreted as
    // events.  There are two kinds of events: observable events are
    // those used in the formula, and unobservable events or other
    // events that can occur at anytime.  All events exclude each
    // other.
    bdd observable_events = bddfalse;
    bdd unobservable_events = bddfalse;
    if (unobs)
      {
	bdd neg_events = bddtrue;
1322
1323
	std::auto_ptr<atomic_prop_set> aps(atomic_prop_collect(f));
	for (atomic_prop_set::const_iterator i = aps->begin();
1324
1325
1326
1327
1328
1329
1330
1331
	     i != aps->end(); ++i)
	  {
	    int p = d.register_proposition(*i);
	    bdd pos = bdd_ithvar(p);
	    bdd neg = bdd_nithvar(p);
	    observable_events = (observable_events & neg) | (neg_events & pos);
	    neg_events &= neg;
	  }
1332
	for (atomic_prop_set::const_iterator i = unobs->begin();
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
	     i != unobs->end(); ++i)
	  {
	    int p = d.register_proposition(*i);
	    bdd pos = bdd_ithvar(p);
	    bdd neg = bdd_nithvar(p);
	    unobservable_events = ((unobservable_events & neg)
				   | (neg_events & pos));
	    observable_events &= neg;
	    neg_events &= neg;
	  }
      }
    bdd all_events = observable_events | unobservable_events;

1346

1347
    tgba_explicit_formula* a = new tgba_explicit_formula(dict);
1348

1349
1350
1351
1352
    // This is in case the initial state is equivalent to true...
    if (symb_merge)
      f2 = const_cast<formula*>(fc.canonize(f2));

1353
1354
    formulae_to_translate.insert(f2);
    a->set_init_state(f2);
1355
1356
1357
1358

    while (!formulae_to_translate.empty())
      {
	// Pick one formula.
1359
	const formula* now = *formulae_to_translate.begin();
1360
1361
1362
	formulae_to_translate.erase(formulae_to_translate.begin());

	// Translate it into a BDD to simplify it.
1363
1364
	const formula_canonizer::translated& t = fc.translate(now);
	bdd res = t.symbolic;
1365

1366
1367
1368
1369
	// Handle exclusive events.
	if (unobs)
	  {
	    res &= observable_events;
1370
	    int n = d.register_next_variable(now);
1371
1372
1373
	    res |= unobservable_events & bdd_ithvar(n) & all_promises;
	  }

1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
	// We used to factor only Next and A variables while computing
	// prime implicants, with
	//    minato_isop isop(res, d.next_set & d.a_set);
	// in order to obtain transitions with formulae of atomic
	// proposition directly, but unfortunately this led to strange
	// factorizations.  For instance f U g was translated as
	//     r(f U g) = g + a(g).r(X(f U g)).(f + g)
	// instead of just
	//     r(f U g) = g + a(g).r(X(f U g)).f
	// Of course both formulae are logically equivalent, but the
	// latter is "more deterministic" than the former, so it should
	// be preferred.
	//
	// Therefore we now factor all variables.  This may lead to more
	// transitions than necessary (e.g.,  r(f + g) = f + g  will be
1389
1390
1391
	// coded as two transitions), but we later merge all transitions
	// with same source/destination and acceptance conditions.  This
	// is the goal of the `dests' hash.
1392
	//
1393
	// Note that this is still not optimal.  For instance it is
1394
	// better to encode `f U g' as
1395
	//     r(f U g) = g + a(g).r(X(f U g)).f.!g
1396
1397
1398
1399
	// because that leads to a deterministic automaton.  In order
	// to handle this, we take the conditions of any transition
	// going to true (it's `g' here), and remove it from the other
	// transitions.
1400
1401
1402
	//
	// In `exprop' mode, considering all possible combinations of
	// outgoing propositions generalizes the above trick.
1403
	dest_map dests;
1404

1405
	// Compute all outgoing arcs.
1406
1407
1408
1409
1410

	// If EXPROP is set, we will refine the symbolic
	// representation of the successors for all combinations of
	// the atomic properties involved in the formula.
	// VAR_SET is the set of these properties.
1411
	bdd var_set = bdd_existcomp(bdd_support(res), d.var_set);
1412
1413
1414
1415
1416
	// ALL_PROPS is the combinations we have yet to consider.
	// We used to start with `all_props = bddtrue', but it is
	// more efficient to start with the set of all satisfiable
	// variables combinations.
	bdd all_props = bdd_existcomp(res, d.var_set);
1417
	while (all_props != bddfalse)
1418
	  {
1419
1420
1421
	    bdd one_prop_set = bddtrue;
	    if (exprop)
	      one_prop_set = bdd_satoneset(all_props, var_set, bddtrue);
1422
	    all_props -= one_prop_set;
1423

1424
	    typedef std::map<bdd, const formula*, bdd_less_than> succ_map;
1425
1426
	    succ_map succs;

1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
	    // Compute prime implicants.
	    // The reason we use prime implicants and not bdd_satone()
	    // is that we do not want to get any negation in front of Next
	    // or Acc variables.  We wouldn't know what to do with these.
	    // We never added negations in front of these variables when
	    // we built the BDD, so prime implicants will not "invent" them.
	    //
	    // FIXME: minato_isop is quite expensive, and I (=adl)
	    // don't think we really care that much about getting the
	    // smalled sum of products that minato_isop strives to
	    // compute.  Given that Next and Acc variables should
	    // always be positive, maybe there is a faster way to
	    // compute the successors?  E.g. using bdd_satone() and
	    // ignoring negated Next and Acc variables.
1441
1442
1443
	    minato_isop isop(res & one_prop_set);
	    bdd cube;
	    while ((cube = isop.next()) != bddfalse)
1444
	      {
1445
		bdd label = bdd_exist(cube, d.next_set);
1446
		bdd dest_bdd = bdd_existcomp(cube, d.next_set);
1447
1448
		const formula* dest = d.conj_bdd_to_formula(dest_bdd);

1449
1450
1451
1452
		// Simplify the formula, if requested.
		if (reduce_ltl)
		  {
		    formula* tmp = reduce(dest, reduce_ltl);
1453
		    dest->destroy();
1454
1455
1456
1457
1458
1459
		    dest = tmp;
		    // Ignore the arc if the destination reduces to false.
		    if (dest == constant::false_instance())
		      continue;
		  }

1460
1461
1462
1463
		// If we already know a state with the same
		// successors, use it in lieu of the current one.
		if (symb_merge)
		  dest = fc.canonize(dest);