Commit 7f31d703 authored by Alexandre Duret-Lutz's avatar Alexandre Duret-Lutz

* src/tgbaalgos/cutscc.cc: Cosmetics.

parent 26f48b1d
// -*- coding: utf-8 -*-
// Copyright (C) 2009, 2011, 2012 Laboratoire de Recherche et
// Copyright (C) 2009, 2011, 2012, 2013 Laboratoire de Recherche et
// Developpement de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
......@@ -25,214 +25,208 @@
namespace spot
{
tgba* cut_scc(const tgba* a, const scc_map& m,
const std::set<unsigned>& s)
namespace
{
tgba_explicit_string* sub_a = new tgba_explicit_string(a->get_dict());
state* cur = a->get_init_state();
std::queue<state*> tovisit;
typedef Sgi::hash_set<const state*,
state_ptr_hash, state_ptr_equal> hash_type;
// Setup
hash_type seen;
unsigned scc_number;
std::string cur_format = a->format_state(cur);
std::set<unsigned>::iterator it;
// Check if we have at least one accepting SCC.
for (it = s.begin(); it != s.end() && !m.accepting(*it); ++it)
continue;
assert(it != s.end());
tovisit.push(cur);
seen.insert(cur);
sub_a->add_state(cur_format);
sub_a->copy_acceptance_conditions_of(a);
// If the initial is not part of one of the desired SCC, exit
assert(s.find(m.scc_of_state(cur)) != s.end());
// Perform BFS to visit each state.
while (!tovisit.empty())
static tgba*
cut_scc(const tgba* a, const scc_map& m,
const std::set<unsigned>& s)
{
cur = tovisit.front();
tovisit.pop();
tgba_succ_iterator* sit = a->succ_iter(cur);
for (sit->first(); !sit->done(); sit->next())
{
cur_format = a->format_state(cur);
state* dst = sit->current_state();
std::string dst_format = a->format_state(dst);
scc_number= m.scc_of_state(dst);
// Is the successor included in one of the desired SCC ?
if (s.find(scc_number) != s.end())
{
if (seen.find(dst) == seen.end())
{
tovisit.push(dst);
seen.insert(dst); // has_state?
}
else
{
dst->destroy();
}
state_explicit_string::transition* t =
sub_a->create_transition(cur_format, dst_format);
sub_a->add_conditions(t, sit->current_condition());
sub_a->
add_acceptance_conditions(t,
sit->current_acceptance_conditions());
}
else
tgba_explicit_string* sub_a = new tgba_explicit_string(a->get_dict());
state* cur = a->get_init_state();
std::queue<state*> tovisit;
typedef Sgi::hash_set<const state*,
state_ptr_hash, state_ptr_equal> hash_type;
// Setup
hash_type seen;
unsigned scc_number;
std::string cur_format = a->format_state(cur);
std::set<unsigned>::iterator it;
// Check if we have at least one accepting SCC.
for (it = s.begin(); it != s.end() && !m.accepting(*it); ++it)
continue;
assert(it != s.end());
tovisit.push(cur);
seen.insert(cur);
sub_a->add_state(cur_format);
sub_a->copy_acceptance_conditions_of(a);
// If the initial is not part of one of the desired SCC, exit
assert(s.find(m.scc_of_state(cur)) != s.end());
// Perform BFS to visit each state.
while (!tovisit.empty())
{
dst->destroy();
cur = tovisit.front();
tovisit.pop();
tgba_succ_iterator* sit = a->succ_iter(cur);
for (sit->first(); !sit->done(); sit->next())
{
cur_format = a->format_state(cur);
state* dst = sit->current_state();
std::string dst_format = a->format_state(dst);
scc_number= m.scc_of_state(dst);
// Is the successor included in one of the desired SCC ?
if (s.find(scc_number) != s.end())
{
if (seen.find(dst) == seen.end())
{
tovisit.push(dst);
seen.insert(dst); // has_state?
}
else
{
dst->destroy();
}
state_explicit_string::transition* t =
sub_a->create_transition(cur_format, dst_format);
sub_a->add_conditions(t, sit->current_condition());
bdd acc = sit->current_acceptance_conditions();
sub_a->add_acceptance_conditions(t, acc);
}
else
{
dst->destroy();
}
}
delete sit;
}
}
delete sit;
}
hash_type::iterator it2;
// Free visited states.
for (it2 = seen.begin(); it2 != seen.end(); ++it2)
(*it2)->destroy();
return sub_a;
}
void print_set(const sccs_set* s)
{
std::cout << "set : ";
std::set<unsigned>::iterator vit;
for (vit = s->sccs.begin(); vit != s->sccs.end(); ++vit)
std::cout << *vit << " ";
std::cout << std::endl;
}
hash_type::iterator it2;
// Free visited states.
for (it2 = seen.begin(); it2 != seen.end(); ++it2)
(*it2)->destroy();
return sub_a;
}
unsigned set_distance(const sccs_set* s1,
const sccs_set* s2,
const std::vector<unsigned>& scc_sizes)
{
// Compute the distance between two sets.
// Formula is : distance = size(s1) + size(s2) - size(s1 inter s2)
std::set<unsigned>::iterator it;
std::set<unsigned> result;
unsigned inter_sum = 0;
std::set_intersection(s1->sccs.begin(), s1->sccs.end(),
s2->sccs.begin(), s2->sccs.end(),
std::inserter(result, result.begin()));
for (it = result.begin(); it != result.end(); ++it)
inter_sum += scc_sizes[*it];
return s1->size + s2->size - 2*inter_sum;
}
static unsigned set_distance(const sccs_set* s1,
const sccs_set* s2,
const std::vector<unsigned>& scc_sizes)
{
// Compute the distance between two sets.
// Formula is : distance = size(s1) + size(s2) - size(s1 inter s2)
std::set<unsigned>::iterator it;
std::set<unsigned> result;
unsigned inter_sum = 0;
std::set_intersection(s1->sccs.begin(), s1->sccs.end(),
s2->sccs.begin(), s2->sccs.end(),
std::inserter(result, result.begin()));
for (it = result.begin(); it != result.end(); ++it)
inter_sum += scc_sizes[*it];
return s1->size + s2->size - 2*inter_sum;
}
sccs_set* set_union(sccs_set* s1,
sccs_set* s2,
const std::vector<unsigned>& scc_sizes)
{
// Perform the union of two sets.
sccs_set* result = new sccs_set;
set_union(s1->sccs.begin(), s1->sccs.end(),
s2->sccs.begin(), s2->sccs.end(),
std::inserter(result->sccs, result->sccs.begin()));
result->size = 0;
std::set<unsigned>::iterator it;
for (it = result->sccs.begin(); it != result->sccs.end(); ++it)
result->size += scc_sizes[*it];
delete s1;
return result;
}
static sccs_set* set_union(sccs_set* s1,
sccs_set* s2,
const std::vector<unsigned>& scc_sizes)
{
// Perform the union of two sets.
sccs_set* result = new sccs_set;
set_union(s1->sccs.begin(), s1->sccs.end(),
s2->sccs.begin(), s2->sccs.end(),
std::inserter(result->sccs, result->sccs.begin()));
result->size = 0;
std::set<unsigned>::iterator it;
for (it = result->sccs.begin(); it != result->sccs.end(); ++it)
result->size += scc_sizes[*it];
delete s1;
return result;
}
struct recurse_data
{
std::set<unsigned> seen;
std::vector<std::vector<sccs_set* > >* rec_paths;
};
struct recurse_data
{
std::set<unsigned> seen;
std::vector<std::vector<sccs_set* > >* rec_paths;
};
void find_paths_sub(unsigned init_scc,
const scc_map& m,
recurse_data& d,
const std::vector<unsigned>& scc_sizes)
{
// Find all the paths from the initial states to an accepting SCC
// We need two stacks, one to track the current state, the other to track
// the current iterator of this state.
std::stack<scc_map::succ_type::const_iterator> it_stack;
std::stack<unsigned> scc_stack;
std::vector<const scc_map::succ_type*> scc_succ;
unsigned scc_count = m.scc_count();
scc_succ.reserve(scc_count);
d.seen.insert(init_scc);
unsigned i;
for (i = 0; i < scc_count; ++i)
scc_succ.push_back(&(m.succ(i)));
// Setup the two stacks with the initial SCC.
scc_stack.push(init_scc);
it_stack.push(scc_succ[init_scc]->begin());
while (!scc_stack.empty())
static void find_paths_sub(unsigned init_scc,
const scc_map& m,
recurse_data& d,
const std::vector<unsigned>& scc_sizes)
{
unsigned cur_scc = scc_stack.top();
scc_stack.pop();
d.seen.insert(cur_scc);
scc_map::succ_type::const_iterator it;
// Find the next unvisited successor.
for (it = it_stack.top(); it != scc_succ[cur_scc]->end()
&& d.seen.find(it->first) != d.seen.end(); ++it)
continue;
it_stack.pop();
// If there are no successors and if the SCC is not accepting, this is
// an useless path. Throw it away.
if (scc_succ[cur_scc]->begin() == scc_succ[cur_scc]->end()
&& !m.accepting(cur_scc))
continue;
std::vector<std::vector<sccs_set* > >* rec_paths = d.rec_paths;
// Is there a successor to process ?
if (it != scc_succ[cur_scc]->end())
{
// Yes, add it to the stack for later processing.
unsigned dst = it->first;
scc_stack.push(cur_scc);
++it;
it_stack.push(it);
if (d.seen.find(dst) == d.seen.end())
{
scc_stack.push(dst);
it_stack.push(scc_succ[dst]->begin());
}
}
else
{
// No, all successors have been processed, update the current SCC.
for (it = scc_succ[cur_scc]->begin();
it != scc_succ[cur_scc]->end(); ++it)
{
unsigned dst = it->first;
std::vector<sccs_set*>::iterator lit;
// Extend all the reachable paths by adding the current SCC.
for (lit = (*rec_paths)[dst].begin();
lit != (*rec_paths)[dst].end(); ++lit)
{
sccs_set* path = new sccs_set;
path->sccs = (*lit)->sccs;
path->size = (*lit)->size + scc_sizes[cur_scc];
path->sccs.insert(path->sccs.begin(), cur_scc);
(*rec_paths)[cur_scc].push_back(path);
}
}
bool has_succ = false;
for (it = scc_succ[cur_scc]->begin();
it != scc_succ[cur_scc]->end() && !has_succ; ++it)
{
has_succ = !(*rec_paths)[it->first].empty();
}
// Create a new path iff the SCC is accepting and not included
// in another path.
if (m.accepting(cur_scc) && !has_succ)
// Find all the paths from the initial states to an accepting SCC
// We need two stacks, one to track the current state, the other to track
// the current iterator of this state.
std::stack<scc_map::succ_type::const_iterator> it_stack;
std::stack<unsigned> scc_stack;
std::vector<const scc_map::succ_type*> scc_succ;
unsigned scc_count = m.scc_count();
scc_succ.reserve(scc_count);
d.seen.insert(init_scc);
unsigned i;
for (i = 0; i < scc_count; ++i)
scc_succ.push_back(&(m.succ(i)));
// Setup the two stacks with the initial SCC.
scc_stack.push(init_scc);
it_stack.push(scc_succ[init_scc]->begin());
while (!scc_stack.empty())
{
sccs_set* path = new sccs_set;
path->size = scc_sizes[cur_scc];
path->sccs.insert(path->sccs.begin(), cur_scc);
(*rec_paths)[cur_scc].push_back(path);
}
}
unsigned cur_scc = scc_stack.top();
scc_stack.pop();
d.seen.insert(cur_scc);
scc_map::succ_type::const_iterator it;
// Find the next unvisited successor.
for (it = it_stack.top(); it != scc_succ[cur_scc]->end()
&& d.seen.find(it->first) != d.seen.end(); ++it)
continue;
it_stack.pop();
// If there are no successors and if the SCC is not accepting, this is
// an useless path. Throw it away.
if (scc_succ[cur_scc]->begin() == scc_succ[cur_scc]->end()
&& !m.accepting(cur_scc))
continue;
std::vector<std::vector<sccs_set* > >* rec_paths = d.rec_paths;
// Is there a successor to process ?
if (it != scc_succ[cur_scc]->end())
{
// Yes, add it to the stack for later processing.
unsigned dst = it->first;
scc_stack.push(cur_scc);
++it;
it_stack.push(it);
if (d.seen.find(dst) == d.seen.end())
{
scc_stack.push(dst);
it_stack.push(scc_succ[dst]->begin());
}
}
else
{
// No, all successors have been processed, update the current SCC.
for (it = scc_succ[cur_scc]->begin();
it != scc_succ[cur_scc]->end(); ++it)
{
unsigned dst = it->first;
std::vector<sccs_set*>::iterator lit;
// Extend all the reachable paths by adding the current SCC.
for (lit = (*rec_paths)[dst].begin();
lit != (*rec_paths)[dst].end(); ++lit)
{
sccs_set* path = new sccs_set;
path->sccs = (*lit)->sccs;
path->size = (*lit)->size + scc_sizes[cur_scc];
path->sccs.insert(path->sccs.begin(), cur_scc);
(*rec_paths)[cur_scc].push_back(path);
}
}
bool has_succ = false;
for (it = scc_succ[cur_scc]->begin();
it != scc_succ[cur_scc]->end() && !has_succ; ++it)
{
has_succ = !(*rec_paths)[it->first].empty();
}
// Create a new path iff the SCC is accepting and not included
// in another path.
if (m.accepting(cur_scc) && !has_succ)
{
sccs_set* path = new sccs_set;
path->size = scc_sizes[cur_scc];
path->sccs.insert(path->sccs.begin(), cur_scc);
(*rec_paths)[cur_scc].push_back(path);
}
}
}
return;
}
return;
}
std::vector<std::vector<sccs_set* > >* find_paths(tgba* a, const scc_map& m)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment