Commit 969d9271 authored by Alexandre Duret-Lutz's avatar Alexandre Duret-Lutz
Browse files

Add the Spin'13 benchmark.

* bench/spin13/: New directory.
* bench/Makefile.am, README, configure.ac: Add it.
* bench/ltl2tgba/sum.py: Display smaller tables.
parent b6d4806d
......@@ -192,6 +192,7 @@ bench/ Benchmarks for ...
ltlclasses/ ... translation of more classes of LTL formulae,
scc-stats/ ... SCC statistics after translation of LTL formulae,
split-product/ ... parallelizing gain after splitting LTL automata,
spin13/ ... compositional suspension and other improvements,
wdba/ ... WDBA minimization (for obligation properties).
wrap/ Wrappers for other languages.
python/ Python bindings for Spot and BuDDy
......
## Copyright (C) 2008, 2009, 2010, 2012 Laboratoire de Recherche et
## Dveloppement de l'Epita (LRDE).
## Copyright (C) 2008, 2009, 2010, 2012, 2013 Laboratoire de Recherche
## et Dveloppement de l'Epita (LRDE).
## Copyright (C) 2005 Laboratoire d'Informatique de Paris 6 (LIP6),
## dpartement Systmes Rpartis Coopratifs (SRC), Universit Pierre
## et Marie Curie.
......@@ -20,4 +20,4 @@
## along with this program. If not, see <http://www.gnu.org/licenses/>.
SUBDIRS = emptchk ltl2tgba scc-stats split-product ltlcounter \
ltlclasses wdba
ltlclasses wdba spin13
......@@ -51,7 +51,7 @@ def process_file(filename):
fields = { name:index for index,name in enumerate(data["fields"]) }
toolcol = fields['tool']
inputcol = fields['formula']
inputs = data["inputs"]
# Index results by tool, then input
......@@ -67,9 +67,9 @@ def process_file(filename):
print(r'''
\section*{\texttt{%s}}
\subsection*{Cumulative summary}''' % filename)
\subsection*{Cumulative summary}''' % latex_escape(filename))
print('\\begin{tabular}{l' + ('r' * (ncols - 1)) + '}\n',
print('\\noindent\\begin{tabular}{l' + ('r' * (ncols - 1)) + '}\n',
" & ".join(rot(latex_escape(["tool", "count"] + data["fields"][2:]))),
"\\\\")
for i in range(0, ntools):
......@@ -89,7 +89,7 @@ states and more transitions.
''')
header = '\\begin{tabular}{l'
header = '\\noindent{\\small\\begin{tabular}{l'
for i in data["tool"]:
header += 'c'
header += '}'
......@@ -114,7 +114,7 @@ states and more transitions.
x += 1
print("&", x, end=' ')
print(r"\\")
print(r'\end{tabular}')
print(r'\end{tabular}}')
def main():
......@@ -129,7 +129,7 @@ def main():
args = p.parse_args()
print(r'''\documentclass{article}
\usepackage[a4paper,landscape,margin=2cm]{geometry}
\usepackage[a4paper,landscape,margin=1cm]{geometry}
\usepackage{adjustbox}
\usepackage{array}
......@@ -138,7 +138,7 @@ def main():
l%
<{\egroup}%
}
\newcommand*\rot{\multicolumn{1}{R{45}{1em}}}% no optional argument here, please!
\newcommand*\rot{\multicolumn{1}{R{90}{0em}}}% no optional argument here, please!
\begin{document}
''')
......
## Copyright (C) 2013 Laboratoire de Recherche et Développement de
## l'Epita (LRDE).
##
## This file is part of Spot, a model checking library.
##
## Spot is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## Spot is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
## or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
## License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
EXTRA_DIST = big_2-fair_2.ltl big_2-fair_3-3.ltl big_2-strong_1.ltl \
big_2-strong_2.ltl big_2.ltl html.bottom html.top \
known.ltl new-fair2.ltl new-strong1.ltl new-strong2.ltl \
new-weak3.ltl new.ltl run.sh README
This contains most of the a benchmark used for the paper
"Compositional Approach to Suspension and Other Improvements to LTL
Translation", Tomáš Babiak, Thomas Badie, Alexandre Duret-Lutz,
Mojmír Křetínský, and Jan Strejček.
To appear in the proceedings of Spin'13.
By "most" we means that some lines of the table we actually be missing
because we cannot compute them with the current version of Spot. The
missing lines are those with a small "a", that use the old SCC-based
simplification, and not the new one which is presented in section 4.1
of the paper.
If you have any interest in reproducing the data from the paper, using
exactly the same versions (yes, that's a plural), please head over to
http://www.lrde.epita.fr/~adl/spin13/
Keep in mind that as Spot is evolving, the results from this benchmark
may evolve (hopefully for the best!) with time.
Running instructions
====================
To run the benchmark:
1) Now configure and compile the current tarball with
./configure --disable-shared --disable-devel
make
but to not install it.
2) Go to directory bench/spin13/ and run the script "run.sh",
this will just build "run.mk"
3) Run "make -f run.mk -j4", adjusting "-j8" to the number of
cores that your computer have.
The run.mk makefile will launch several instances of ltlcross in
parallel (depending on the -j argument). There are 22 of them
to run in total. Once that is done, the different data are
collated into a LaTeX file (using the ../ltl2tgba/sum.py script)
which is then compiled to PDF (using latexmk). Finally, all
data are compacted into a tarball named with the date.
Results
=======
The results are more detailed that Table 1 in the Spin'13 paper.
ba-sum.pdf and tgba-sum.pdf show the main results over several sets
of formulae:
- known.ltl is the set described in the paper;
- new-fair3.ltl.pos is what we call fair3.ltl in the paper;
- new-strong2.ltl.pos is what we call strong2.ltl in the paper.
The extra sets are:
- new-ltl.pos: the set of random \varphi_i formula used to build
new-fair3.ltl.pos and new-strong2.ltl.pos;
- new-fair2.ltl.pos: the above formulae combined with weak
fairness hypothesis of the form (FG(a)->GF(b));
- new-strong1.ltl.pos: simimular to strong2 but using only
one strong fairness hypothesis of the form
(GF(a)->GF(b)).
Additionally, for all *.ltl.pos files, we have an *.ltl.neg file that
contains the negated formulas.
These 11 sets are translated to TGBA or BA using different
translation configurations. Many of the configurations should be
recognized from the name in the paper. The "Early" lines describe
an extra experiement (not discussed in the paper), where
composition of the suspended subformula starts on the transition
that enters an accepting SCC (not in the SCC itself).
In addition to the summaries in ba-sum.pdf and tgba-sum.pdf, detailled
results are provided as CSV files, slightly better formated JSON
files, and in HTML pages that can be used to explore the results
interactively. (It probably does not work with Internet Explorer. If
you have problems, install FireFox or Chrome.)
((X ((p1 V <> ! p0) U p2) U [] ! <> ! X p4)) /\ (<>[]p10 -> []<>p11)
(((p0 U (! <> <> p4 U <> X ! p5)) U [] (X p0 U X p0))) /\ (<>[]p10 -> []<>p11)
([] ((<> p3 U p1) U ((((p1 U p5) \/ p5) U ! [] p0) /\ p1))) /\ (<>[]p10 -> []<>p11)
(! ((<> <> <> (p6 U p5) U <> X p1) /\ ! <> p2)) /\ (<>[]p10 -> []<>p11)
(((<> p6 -> X X X p1) U (([] p3 \/ p6) V [] p3))) /\ (<>[]p10 -> []<>p11)
((X p4 -> ([] <> (X (X (p4 U ! p7) U <> p4) U [] p2) U p0))) /\ (<>[]p10 -> []<>p11)
((((p6 /\ <> false) V (! (<> p4 V p3) V [] p0)) V [] (p0 -> p5))) /\ (<>[]p10 -> []<>p11)
(! ((! p1 U p4) U (<> p7 U ((p0 -> ! p4) V [] p0)))) /\ (<>[]p10 -> []<>p11)
(X (<> p0 /\ (! ! ((p0 U [] p6) U ! (p3 U p1)) V (p5 \/ <> p2)))) /\ (<>[]p10 -> []<>p11)
(((! p4 /\ ((p2 U p0) U (! p6 -> (<> p2 \/ p6)))) -> X (p2 -> p1))) /\ (<>[]p10 -> []<>p11)
(((<> (p4 U <> p3) \/ [] [] (p2 U [] [] p1)) /\ ! ! (p5 U <> p3))) /\ (<>[]p10 -> []<>p11)
(([] <> (<> ! ! (p2 V p1) -> [] (p7 -> X p2)) -> <> ! X p2)) /\ (<>[]p10 -> []<>p11)
(! (X (p1 /\ X X [] ! [] <> (p6 /\ X p1)) \/ (p5 -> p7))) /\ (<>[]p10 -> []<>p11)
(([] <> (<> ([] p3 -> [] X p3) V <> p3) U X X X p7)) /\ (<>[]p10 -> []<>p11)
(<> ((p6 \/ p6) V ((<> [] X X X ! p1 U p1) -> <> p1))) /\ (<>[]p10 -> []<>p11)
(<> X <> X <> (X [] p2 -> (<> (true -> [] p2) /\ X p2))) /\ (<>[]p10 -> []<>p11)
((([] ! [] (p7 U p5) V X p0) -> (p5 -> [] X p5))) /\ (<>[]p10 -> []<>p11)
(([] [] (p2 \/ p1) -> (([] p3 U true) U X (X p6 U (p5 /\ <> p5))))) /\ (<>[]p10 -> []<>p11)
([] ([] p1 /\ (<> p7 -> ((! p0 U p0) U <> <> p4)))) /\ (<>[]p10 -> []<>p11)
(((p2 V p3) U ! ((<> p4 \/ p5) -> (! (p5 \/ p4) V p7)))) /\ (<>[]p10 -> []<>p11)
((([] (<> (<> X p4 /\ [] p1) U p1) V [] <> X [] p5) U p1)) /\ (<>[]p10 -> []<>p11)
(X [] X ! ((p4 U (p2 -> p1)) \/ ! (<> p5 \/ p4))) /\ (<>[]p10 -> []<>p11)
((((<> p7 U (p6 U p7)) -> (p4 -> p6)) -> <> X (p0 -> <> (<> p6 -> p0)))) /\ (<>[]p10 -> []<>p11)
((p6 \/ ([] (p1 /\ p7) U <> (p4 U ((p2 \/ p7) -> [] (p3 U p7)))))) /\ (<>[]p10 -> []<>p11)
(((<> (p0 U p0) /\ [] p4) V ! <> (p2 /\ <> <> (p7 -> [] p7)))) /\ (<>[]p10 -> []<>p11)
((<> X <> <> <> (p3 -> ([] ! p6 -> p5)) \/ (p5 \/ ! [] (p4 /\ p4)))) /\ (<>[]p10 -> []<>p11)
(((X <> <> true U ! p1) V ((! ! p7 V p3) U ! (p1 /\ p5)))) /\ (<>[]p10 -> []<>p11)
((<> [] (((p6 -> p1) V (p5 U p5)) U ! p2) /\ (<> (p2 U p5) /\ ! p4))) /\ (<>[]p10 -> []<>p11)
(([] (X ((p4 V (p5 /\ p7)) \/ (p1 U p5)) U ! p5) U (p2 U p6))) /\ (<>[]p10 -> []<>p11)
((! [] p5 /\ ((! (! p2 -> p6) \/ [] (p1 V p7)) U (<> p4 V [] p6)))) /\ (<>[]p10 -> []<>p11)
((<> p7 U <> ((p1 U <> p4) U X ! X [] [] p3))) /\ (<>[]p10 -> []<>p11)
(<> ([] X ((p3 /\ p2) -> ! X <> p4) U ((p0 /\ <> p6) -> [] p2))) /\ (<>[]p10 -> []<>p11)
(<> [] [] (p4 /\ <> ((X p7 U p3) U <> (p5 U ([] p4 V p2))))) /\ (<>[]p10 -> []<>p11)
(X ([] ((p5 /\ ! [] p2) U p6) U (! p6 V (p6 \/ p7)))) /\ (<>[]p10 -> []<>p11)
(((((p2 -> (p5 U p3)) U (p6 U p0)) V p3) -> [] [] p7)) /\ (<>[]p10 -> []<>p11)
((([] p4 \/ X <> (X p6 U X p7)) /\ (p1 /\ ((p7 /\ X p2) \/ p1)))) /\ (<>[]p10 -> []<>p11)
((! ((! [] p3 \/ ! p7) /\ p5) U (X ! (X p2 -> p0) \/ X [] p5))) /\ (<>[]p10 -> []<>p11)
(((! p5 -> ! p4) U ((p3 V X X p2) U (<> p7 U X p2)))) /\ (<>[]p10 -> []<>p11)
(<> (X (<> X ((p3 U (p0 \/ p4)) U p6) U p1) V <> ! <> X ! p4)) /\ (<>[]p10 -> []<>p11)
(! (<> p4 /\ <> (([] (p0 -> p4) /\ X p1) /\ X p0))) /\ (<>[]p10 -> []<>p11)
(<> ((((p2 /\ p7) -> X p4) U true) U X (p5 \/ ! false))) /\ (<>[]p10 -> []<>p11)
((X ((p2 /\ [] [] ! p1) U <> p5) \/ <> ! X [] (<> X p2 U p5))) /\ (<>[]p10 -> []<>p11)
((! (p1 -> [] ! ([] p3 U [] [] p6)) /\ (p3 U p2))) /\ (<>[]p10 -> []<>p11)
((p4 U <> (X ((<> ([] p1 V p5) U X p6) U <> p4) \/ (false \/ p1)))) /\ (<>[]p10 -> []<>p11)
(<> (p6 U ! [] X <> (! (p3 U (X p6 U true)) -> (X X p5 V p4)))) /\ (<>[]p10 -> []<>p11)
((([] p1 V ! p5) V <> ! ([] ! [] p2 U [] p4))) /\ (<>[]p10 -> []<>p11)
(((((<> p0 -> p1) U (p3 -> p7)) \/ (<> p7 V (p0 U p0))) -> ! p6)) /\ (<>[]p10 -> []<>p11)
(((X p4 U <> ([] p2 -> (p1 V p3))) \/ (! p6 U <> p4))) /\ (<>[]p10 -> []<>p11)
(X ([] [] p2 U (X (X [] p7 U <> [] p2) -> (p4 /\ X p2)))) /\ (<>[]p10 -> []<>p11)
((p5 -> (<> p2 U (((! ! p5 U (p2 -> ! p2)) U <> p1) V p5)))) /\ (<>[]p10 -> []<>p11)
(X ((! (p4 /\ p1) \/ p6) U [] (<> (p6 U ! p6) V p4))) /\ (<>[]p10 -> []<>p11)
((<> (p1 \/ ([] (p7 /\ p0) -> p5)) \/ (p4 U (p5 /\ p1)))) /\ (<>[]p10 -> []<>p11)
((([] <> p0 -> ([] <> <> <> p2 V ((X p4 /\ X p5) U p6))) /\ ! p6)) /\ (<>[]p10 -> []<>p11)
(([] ! (p5 V p7) V ((p0 V ! p2) U [] (p7 \/ ! [] [] p3)))) /\ (<>[]p10 -> []<>p11)
((! [] p1 -> ((p4 U p0) V (! (p5 V p4) U ! [] (p7 V p5))))) /\ (<>[]p10 -> []<>p11)
((<> X [] [] p2 \/ <> X <> ((p0 U p0) U (p1 /\ (p4 -> p3))))) /\ (<>[]p10 -> []<>p11)
(! ((((p4 \/ p7) V p0) U (p2 U p4)) V (! p7 U ! p2))) /\ (<>[]p10 -> []<>p11)
((! p3 U ((((! p7 \/ p6) -> ! p5) U (p2 V p1)) /\ ! ! p0))) /\ (<>[]p10 -> []<>p11)
(((p3 U p2) U (<> (X (p4 /\ ! (p0 V X p6)) V <> p1) -> p3))) /\ (<>[]p10 -> []<>p11)
((((p4 U (<> p0 V <> p1)) U p1) -> (((X p3 U (false /\ p6)) U false) U p5))) /\ (<>[]p10 -> []<>p11)
(! [] (([] p4 -> (p7 V ! true)) \/ (! p3 V ! ! p2))) /\ (<>[]p10 -> []<>p11)
(((p2 \/ p7) U ! (p6 \/ X ((p6 -> [] p1) V [] ! ((p3 U p7) U p5))))) /\ (<>[]p10 -> []<>p11)
(<> (X ((! (p7 U true) U (p6 V p7)) V X p5) \/ X p4)) /\ (<>[]p10 -> []<>p11)
(X <> <> ! ((! (p6 V true) -> X p3) V X ! (! p0 U p0))) /\ (<>[]p10 -> []<>p11)
((((X (p5 U ! p1) U ! p1) U <> p0) U ! ((true -> p6) V [] [] true))) /\ (<>[]p10 -> []<>p11)
(((<> p6 U X ((p1 /\ p7) U (X p1 \/ p6))) -> (<> [] p6 U <> p2))) /\ (<>[]p10 -> []<>p11)
((((p5 U p7) U (p3 U <> p4)) -> (! p4 U X ! <> p3))) /\ (<>[]p10 -> []<>p11)
((X (<> ([] p0 V X [] p0) U [] p5) U [] (<> p2 U [] p6))) /\ (<>[]p10 -> []<>p11)
(<> ((((X p3 V X p7) U [] p5) U ((X p2 -> p1) U <> p2)) -> [] p5)) /\ (<>[]p10 -> []<>p11)
((! p3 \/ (<> (p4 U (p4 U p3)) U ([] p6 -> <> p0)))) /\ (<>[]p10 -> []<>p11)
(([] X ([] <> p4 U p6) -> [] ((p0 \/ X p0) -> ! <> (p3 U p6)))) /\ (<>[]p10 -> []<>p11)
([] <> (<> ((p7 V (p7 \/ p6)) U p0) /\ X (X p1 -> ! ! p1))) /\ (<>[]p10 -> []<>p11)
((<> (<> ((p4 U p6) \/ ! p3) U p3) -> [] (false \/ ([] p2 /\ p3)))) /\ (<>[]p10 -> []<>p11)
(((p0 U p5) /\ [] (<> (p2 V ! p0) /\ <> [] ([] p2 V ! X p1)))) /\ (<>[]p10 -> []<>p11)
((<> p2 -> (! p0 \/ <> ((! <> p4 -> ! p5) U p4)))) /\ (<>[]p10 -> []<>p11)
((((p4 \/ X p5) U (p1 V p3)) V (<> <> (X p4 /\ p2) -> (p3 U p0)))) /\ (<>[]p10 -> []<>p11)
(([] (p5 -> <> (p0 /\ p4)) U X <> (p5 U (! false -> p4)))) /\ (<>[]p10 -> []<>p11)
((! ((p5 \/ <> X p2) U p3) V (<> (true U <> p0) \/ p1))) /\ (<>[]p10 -> []<>p11)
((((! p1 U (p2 -> [] [] p3)) -> [] <> (p5 -> <> p3)) /\ [] X p4)) /\ (<>[]p10 -> []<>p11)
(<> ((p1 U X p3) \/ <> X (([] p4 U (true U p3)) V ! (p4 U X p1)))) /\ (<>[]p10 -> []<>p11)
((<> [] (! X p5 /\ <> (X p6 -> (p5 V p7))) U p5)) /\ (<>[]p10 -> []<>p11)
((((p5 /\ p1) -> [] (<> (p1 U X p6) U (p5 U p5))) -> (X X p4 U p0))) /\ (<>[]p10 -> []<>p11)
(([] <> p6 V (((p5 \/ p7) -> X X ! (p7 U p4)) U p0))) /\ (<>[]p10 -> []<>p11)
((<> <> [] ((p6 \/ p6) V ! [] p5) \/ (X ! p6 U p0))) /\ (<>[]p10 -> []<>p11)
(((p5 \/ (p3 U [] ! p7)) U <> X ((p0 \/ X p3) /\ ! ! p5))) /\ (<>[]p10 -> []<>p11)
(<> ! <> [] ! (<> (p6 U p3) /\ [] ((<> [] p6 \/ p4) V p7))) /\ (<>[]p10 -> []<>p11)
(((((p2 /\ (p1 \/ p2)) /\ p2) U X (p6 V p1)) U ((p7 -> ! p6) U p6))) /\ (<>[]p10 -> []<>p11)
(((! p1 /\ p3) V [] <> ! <> (<> (p0 U p4) U X p7))) /\ (<>[]p10 -> []<>p11)
(! (([] ((p2 U ! p1) U (p6 V p7)) \/ (<> p0 U p0)) -> (p3 U p0))) /\ (<>[]p10 -> []<>p11)
(((! ! ((p1 \/ ((p2 V p0) V ! p1)) -> X p1) V ! p4) \/ p2)) /\ (<>[]p10 -> []<>p11)
(((<> p0 U ! <> p7) \/ X (X ! [] X [] p5 U p4))) /\ (<>[]p10 -> []<>p11)
((X (((p1 U p1) U p4) -> [] X ! p5) U (! p7 -> ! p5))) /\ (<>[]p10 -> []<>p11)
((<> [] p0 V X ! (! p6 U (p3 V ! X ([] <> p1 \/ p1))))) /\ (<>[]p10 -> []<>p11)
(([] (false U <> <> X p5) U (X p7 V [] (<> X p4 \/ (<> p2 -> p5))))) /\ (<>[]p10 -> []<>p11)
((X [] p3 U <> ([] <> <> (p0 U false) \/ (! p5 \/ (! ! p2 -> p0))))) /\ (<>[]p10 -> []<>p11)
((X p1 \/ ((X (! [] p0 U p7) U ! p0) U ! p2))) /\ (<>[]p10 -> []<>p11)
(X ([] true U (X (p3 V [] p2) \/ (! p4 \/ <> p2)))) /\ (<>[]p10 -> []<>p11)
([] (<> <> <> X ((p2 V ([] p3 /\ p2)) /\ ! <> [] p3) \/ p3)) /\ (<>[]p10 -> []<>p11)
(X [] [] ((! p1 \/ p6) U <> X (! p2 U <> p1))) /\ (<>[]p10 -> []<>p11)
(((true /\ [] p6) U X <> (<> ((p3 U p5) V [] (p6 -> p6)) U ! ! p3))) /\ (<>[]p10 -> []<>p11)
((X ((p1 V <> ! p0) U p2) U [] ! <> ! X p4)) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(((p0 U (! <> <> p4 U <> X ! p5)) U [] (X p0 U X p0))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
([] ((<> p3 U p1) U ((((p1 U p5) \/ p5) U ! [] p0) /\ p1))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(! ((<> <> <> (p6 U p5) U <> X p1) /\ ! <> p2)) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(((<> p6 -> X X X p1) U (([] p3 \/ p6) V [] p3))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((X p4 -> ([] <> (X (X (p4 U ! p7) U <> p4) U [] p2) U p0))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((((p6 /\ <> false) V (! (<> p4 V p3) V [] p0)) V [] (p0 -> p5))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(! ((! p1 U p4) U (<> p7 U ((p0 -> ! p4) V [] p0)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(X (<> p0 /\ (! ! ((p0 U [] p6) U ! (p3 U p1)) V (p5 \/ <> p2)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(((! p4 /\ ((p2 U p0) U (! p6 -> (<> p2 \/ p6)))) -> X (p2 -> p1))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(((<> (p4 U <> p3) \/ [] [] (p2 U [] [] p1)) /\ ! ! (p5 U <> p3))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(([] <> (<> ! ! (p2 V p1) -> [] (p7 -> X p2)) -> <> ! X p2)) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(! (X (p1 /\ X X [] ! [] <> (p6 /\ X p1)) \/ (p5 -> p7))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(([] <> (<> ([] p3 -> [] X p3) V <> p3) U X X X p7)) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(<> ((p6 \/ p6) V ((<> [] X X X ! p1 U p1) -> <> p1))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(<> X <> X <> (X [] p2 -> (<> (true -> [] p2) /\ X p2))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((([] ! [] (p7 U p5) V X p0) -> (p5 -> [] X p5))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(([] [] (p2 \/ p1) -> (([] p3 U true) U X (X p6 U (p5 /\ <> p5))))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
([] ([] p1 /\ (<> p7 -> ((! p0 U p0) U <> <> p4)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(((p2 V p3) U ! ((<> p4 \/ p5) -> (! (p5 \/ p4) V p7)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((([] (<> (<> X p4 /\ [] p1) U p1) V [] <> X [] p5) U p1)) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(X [] X ! ((p4 U (p2 -> p1)) \/ ! (<> p5 \/ p4))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((((<> p7 U (p6 U p7)) -> (p4 -> p6)) -> <> X (p0 -> <> (<> p6 -> p0)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((p6 \/ ([] (p1 /\ p7) U <> (p4 U ((p2 \/ p7) -> [] (p3 U p7)))))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(((<> (p0 U p0) /\ [] p4) V ! <> (p2 /\ <> <> (p7 -> [] p7)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((<> X <> <> <> (p3 -> ([] ! p6 -> p5)) \/ (p5 \/ ! [] (p4 /\ p4)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(((X <> <> true U ! p1) V ((! ! p7 V p3) U ! (p1 /\ p5)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((<> [] (((p6 -> p1) V (p5 U p5)) U ! p2) /\ (<> (p2 U p5) /\ ! p4))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(([] (X ((p4 V (p5 /\ p7)) \/ (p1 U p5)) U ! p5) U (p2 U p6))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((! [] p5 /\ ((! (! p2 -> p6) \/ [] (p1 V p7)) U (<> p4 V [] p6)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((<> p7 U <> ((p1 U <> p4) U X ! X [] [] p3))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(<> ([] X ((p3 /\ p2) -> ! X <> p4) U ((p0 /\ <> p6) -> [] p2))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(<> [] [] (p4 /\ <> ((X p7 U p3) U <> (p5 U ([] p4 V p2))))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(X ([] ((p5 /\ ! [] p2) U p6) U (! p6 V (p6 \/ p7)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(((((p2 -> (p5 U p3)) U (p6 U p0)) V p3) -> [] [] p7)) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((([] p4 \/ X <> (X p6 U X p7)) /\ (p1 /\ ((p7 /\ X p2) \/ p1)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((! ((! [] p3 \/ ! p7) /\ p5) U (X ! (X p2 -> p0) \/ X [] p5))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(((! p5 -> ! p4) U ((p3 V X X p2) U (<> p7 U X p2)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(<> (X (<> X ((p3 U (p0 \/ p4)) U p6) U p1) V <> ! <> X ! p4)) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(! (<> p4 /\ <> (([] (p0 -> p4) /\ X p1) /\ X p0))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(<> ((((p2 /\ p7) -> X p4) U true) U X (p5 \/ ! false))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((X ((p2 /\ [] [] ! p1) U <> p5) \/ <> ! X [] (<> X p2 U p5))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((! (p1 -> [] ! ([] p3 U [] [] p6)) /\ (p3 U p2))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((p4 U <> (X ((<> ([] p1 V p5) U X p6) U <> p4) \/ (false \/ p1)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(<> (p6 U ! [] X <> (! (p3 U (X p6 U true)) -> (X X p5 V p4)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((([] p1 V ! p5) V <> ! ([] ! [] p2 U [] p4))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(((((<> p0 -> p1) U (p3 -> p7)) \/ (<> p7 V (p0 U p0))) -> ! p6)) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(((X p4 U <> ([] p2 -> (p1 V p3))) \/ (! p6 U <> p4))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(X ([] [] p2 U (X (X [] p7 U <> [] p2) -> (p4 /\ X p2)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((p5 -> (<> p2 U (((! ! p5 U (p2 -> ! p2)) U <> p1) V p5)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(X ((! (p4 /\ p1) \/ p6) U [] (<> (p6 U ! p6) V p4))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((<> (p1 \/ ([] (p7 /\ p0) -> p5)) \/ (p4 U (p5 /\ p1)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((([] <> p0 -> ([] <> <> <> p2 V ((X p4 /\ X p5) U p6))) /\ ! p6)) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(([] ! (p5 V p7) V ((p0 V ! p2) U [] (p7 \/ ! [] [] p3)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((! [] p1 -> ((p4 U p0) V (! (p5 V p4) U ! [] (p7 V p5))))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((<> X [] [] p2 \/ <> X <> ((p0 U p0) U (p1 /\ (p4 -> p3))))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(! ((((p4 \/ p7) V p0) U (p2 U p4)) V (! p7 U ! p2))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((! p3 U ((((! p7 \/ p6) -> ! p5) U (p2 V p1)) /\ ! ! p0))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(((p3 U p2) U (<> (X (p4 /\ ! (p0 V X p6)) V <> p1) -> p3))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((((p4 U (<> p0 V <> p1)) U p1) -> (((X p3 U (false /\ p6)) U false) U p5))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(! [] (([] p4 -> (p7 V ! true)) \/ (! p3 V ! ! p2))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(((p2 \/ p7) U ! (p6 \/ X ((p6 -> [] p1) V [] ! ((p3 U p7) U p5))))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(<> (X ((! (p7 U true) U (p6 V p7)) V X p5) \/ X p4)) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(X <> <> ! ((! (p6 V true) -> X p3) V X ! (! p0 U p0))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((((X (p5 U ! p1) U ! p1) U <> p0) U ! ((true -> p6) V [] [] true))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(((<> p6 U X ((p1 /\ p7) U (X p1 \/ p6))) -> (<> [] p6 U <> p2))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((((p5 U p7) U (p3 U <> p4)) -> (! p4 U X ! <> p3))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((X (<> ([] p0 V X [] p0) U [] p5) U [] (<> p2 U [] p6))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(<> ((((X p3 V X p7) U [] p5) U ((X p2 -> p1) U <> p2)) -> [] p5)) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((! p3 \/ (<> (p4 U (p4 U p3)) U ([] p6 -> <> p0)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(([] X ([] <> p4 U p6) -> [] ((p0 \/ X p0) -> ! <> (p3 U p6)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
([] <> (<> ((p7 V (p7 \/ p6)) U p0) /\ X (X p1 -> ! ! p1))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((<> (<> ((p4 U p6) \/ ! p3) U p3) -> [] (false \/ ([] p2 /\ p3)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(((p0 U p5) /\ [] (<> (p2 V ! p0) /\ <> [] ([] p2 V ! X p1)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((<> p2 -> (! p0 \/ <> ((! <> p4 -> ! p5) U p4)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((((p4 \/ X p5) U (p1 V p3)) V (<> <> (X p4 /\ p2) -> (p3 U p0)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(([] (p5 -> <> (p0 /\ p4)) U X <> (p5 U (! false -> p4)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((! ((p5 \/ <> X p2) U p3) V (<> (true U <> p0) \/ p1))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((((! p1 U (p2 -> [] [] p3)) -> [] <> (p5 -> <> p3)) /\ [] X p4)) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(<> ((p1 U X p3) \/ <> X (([] p4 U (true U p3)) V ! (p4 U X p1)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((<> [] (! X p5 /\ <> (X p6 -> (p5 V p7))) U p5)) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((((p5 /\ p1) -> [] (<> (p1 U X p6) U (p5 U p5))) -> (X X p4 U p0))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(([] <> p6 V (((p5 \/ p7) -> X X ! (p7 U p4)) U p0))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((<> <> [] ((p6 \/ p6) V ! [] p5) \/ (X ! p6 U p0))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(((p5 \/ (p3 U [] ! p7)) U <> X ((p0 \/ X p3) /\ ! ! p5))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(<> ! <> [] ! (<> (p6 U p3) /\ [] ((<> [] p6 \/ p4) V p7))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(((((p2 /\ (p1 \/ p2)) /\ p2) U X (p6 V p1)) U ((p7 -> ! p6) U p6))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(((! p1 /\ p3) V [] <> ! <> (<> (p0 U p4) U X p7))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(! (([] ((p2 U ! p1) U (p6 V p7)) \/ (<> p0 U p0)) -> (p3 U p0))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(((! ! ((p1 \/ ((p2 V p0) V ! p1)) -> X p1) V ! p4) \/ p2)) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(((<> p0 U ! <> p7) \/ X (X ! [] X [] p5 U p4))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((X (((p1 U p1) U p4) -> [] X ! p5) U (! p7 -> ! p5))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((<> [] p0 V X ! (! p6 U (p3 V ! X ([] <> p1 \/ p1))))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(([] (false U <> <> X p5) U (X p7 V [] (<> X p4 \/ (<> p2 -> p5))))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((X [] p3 U <> ([] <> <> (p0 U false) \/ (! p5 \/ (! ! p2 -> p0))))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((X p1 \/ ((X (! [] p0 U p7) U ! p0) U ! p2))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(X ([] true U (X (p3 V [] p2) \/ (! p4 \/ <> p2)))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
([] (<> <> <> X ((p2 V ([] p3 /\ p2)) /\ ! <> [] p3) \/ p3)) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(X [] [] ((! p1 \/ p6) U <> X (! p2 U <> p1))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
(((true /\ [] p6) U X <> (<> ((p3 U p5) V [] (p6 -> p6)) U ! ! p3))) /\ ([]<>p10 /\ []<>p11 /\ []<>p12)
((X ((p1 V <> ! p0) U p2) U [] ! <> ! X p4)) /\ (G(F(p10)) -> G(F(p11)))
(((p0 U (! <> <> p4 U <> X ! p5)) U [] (X p0 U X p0))) /\ (G(F(p10)) -> G(F(p11)))
([] ((<> p3 U p1) U ((((p1 U p5) \/ p5) U ! [] p0) /\ p1))) /\ (G(F(p10)) -> G(F(p11)))
(! ((<> <> <> (p6 U p5) U <> X p1) /\ ! <> p2)) /\ (G(F(p10)) -> G(F(p11)))
(((<> p6 -> X X X p1) U (([] p3 \/ p6) V [] p3))) /\ (G(F(p10)) -> G(F(p11)))
((X p4 -> ([] <> (X (X (p4 U ! p7) U <> p4) U [] p2) U p0))) /\ (G(F(p10)) -> G(F(p11)))
((((p6 /\ <> false) V (! (<> p4 V p3) V [] p0)) V [] (p0 -> p5))) /\ (G(F(p10)) -> G(F(p11)))
(! ((! p1 U p4) U (<> p7 U ((p0 -> ! p4) V [] p0)))) /\ (G(F(p10)) -> G(F(p11)))
(X (<> p0 /\ (! ! ((p0 U [] p6) U ! (p3 U p1)) V (p5 \/ <> p2)))) /\ (G(F(p10)) -> G(F(p11)))
(((! p4 /\ ((p2 U p0) U (! p6 -> (<> p2 \/ p6)))) -> X (p2 -> p1))) /\ (G(F(p10)) -> G(F(p11)))
(((<> (p4 U <> p3) \/ [] [] (p2 U [] [] p1)) /\ ! ! (p5 U <> p3))) /\ (G(F(p10)) -> G(F(p11)))
(([] <> (<> ! ! (p2 V p1) -> [] (p7 -> X p2)) -> <> ! X p2)) /\ (G(F(p10)) -> G(F(p11)))
(! (X (p1 /\ X X [] ! [] <> (p6 /\ X p1)) \/ (p5 -> p7))) /\ (G(F(p10)) -> G(F(p11)))
(([] <> (<> ([] p3 -> [] X p3) V <> p3) U X X X p7)) /\ (G(F(p10)) -> G(F(p11)))
(<> ((p6 \/ p6) V ((<> [] X X X ! p1 U p1) -> <> p1))) /\ (G(F(p10)) -> G(F(p11)))
(<> X <> X <> (X [] p2 -> (<> (true -> [] p2) /\ X p2))) /\ (G(F(p10)) -> G(F(p11)))
((([] ! [] (p7 U p5) V X p0) -> (p5 -> [] X p5))) /\ (G(F(p10)) -> G(F(p11)))
(([] [] (p2 \/ p1) -> (([] p3 U true) U X (X p6 U (p5 /\ <> p5))))) /\ (G(F(p10)) -> G(F(p11)))
([] ([] p1 /\ (<> p7 -> ((! p0 U p0) U <> <> p4)))) /\ (G(F(p10)) -> G(F(p11)))
(((p2 V p3) U ! ((<> p4 \/ p5) -> (! (p5 \/ p4) V p7)))) /\ (G(F(p10)) -> G(F(p11)))
((([] (<> (<> X p4 /\ [] p1) U p1) V [] <> X [] p5) U p1)) /\ (G(F(p10)) -> G(F(p11)))
(X [] X ! ((p4 U (p2 -> p1)) \/ ! (<> p5 \/ p4))) /\ (G(F(p10)) -> G(F(p11)))
((((<> p7 U (p6 U p7)) -> (p4 -> p6)) -> <> X (p0 -> <> (<> p6 -> p0)))) /\ (G(F(p10)) -> G(F(p11)))
((p6 \/ ([] (p1 /\ p7) U <> (p4 U ((p2 \/ p7) -> [] (p3 U p7)))))) /\ (G(F(p10)) -> G(F(p11)))
(((<> (p0 U p0) /\ [] p4) V ! <> (p2 /\ <> <> (p7 -> [] p7)))) /\ (G(F(p10)) -> G(F(p11)))
((<> X <> <> <> (p3 -> ([] ! p6 -> p5)) \/ (p5 \/ ! [] (p4 /\ p4)))) /\ (G(F(p10)) -> G(F(p11)))
(((X <> <> true U ! p1) V ((! ! p7 V p3) U ! (p1 /\ p5)))) /\ (G(F(p10)) -> G(F(p11)))
((<> [] (((p6 -> p1) V (p5 U p5)) U ! p2) /\ (<> (p2 U p5) /\ ! p4))) /\ (G(F(p10)) -> G(F(p11)))
(([] (X ((p4 V (p5 /\ p7)) \/ (p1 U p5)) U ! p5) U (p2 U p6))) /\ (G(F(p10)) -> G(F(p11)))
((! [] p5 /\ ((! (! p2 -> p6) \/ [] (p1 V p7)) U (<> p4 V [] p6)))) /\ (G(F(p10)) -> G(F(p11)))
((<> p7 U <> ((p1 U <> p4) U X ! X [] [] p3))) /\ (G(F(p10)) -> G(F(p11)))
(<> ([] X ((p3 /\ p2) -> ! X <> p4) U ((p0 /\ <> p6) -> [] p2))) /\ (G(F(p10)) -> G(F(p11)))
(<> [] [] (p4 /\ <> ((X p7 U p3) U <> (p5 U ([] p4 V p2))))) /\ (G(F(p10)) -> G(F(p11)))
(X ([] ((p5 /\ ! [] p2) U p6) U (! p6 V (p6 \/ p7)))) /\ (G(F(p10)) -> G(F(p11)))
(((((p2 -> (p5 U p3)) U (p6 U p0)) V p3) -> [] [] p7)) /\ (G(F(p10)) -> G(F(p11)))
((([] p4 \/ X <> (X p6 U X p7)) /\ (p1 /\ ((p7 /\ X p2) \/ p1)))) /\ (G(F(p10)) -> G(F(p11)))
((! ((! [] p3 \/ ! p7) /\ p5) U (X ! (X p2 -> p0) \/ X [] p5))) /\ (G(F(p10)) -> G(F(p11)))
(((! p5 -> ! p4) U ((p3 V X X p2) U (<> p7 U X p2)))) /\ (G(F(p10)) -> G(F(p11)))
(<> (X (<> X ((p3 U (p0 \/ p4)) U p6) U p1) V <> ! <> X ! p4)) /\ (G(F(p10)) -> G(F(p11)))
(! (<> p4 /\ <> (([] (p0 -> p4) /\ X p1) /\ X p0))) /\ (G(F(p10)) -> G(F(p11)))
(<> ((((p2 /\ p7) -> X p4) U true) U X (p5 \/ ! false))) /\ (G(F(p10)) -> G(F(p11)))
((X ((p2 /\ [] [] ! p1) U <> p5) \/ <> ! X [] (<> X p2 U p5))) /\ (G(F(p10)) -> G(F(p11)))
((! (p1 -> [] ! ([] p3 U [] [] p6)) /\ (p3 U p2))) /\ (G(F(p10)) -> G(F(p11)))
((p4 U <> (X ((<> ([] p1 V p5) U X p6) U <> p4) \/ (false \/ p1)))) /\ (G(F(p10)) -> G(F(p11)))
(<> (p6 U ! [] X <> (! (p3 U (X p6 U true)) -> (X X p5 V p4)))) /\ (G(F(p10)) -> G(F(p11)))
((([] p1 V ! p5) V <> ! ([] ! [] p2 U [] p4))) /\ (G(F(p10)) -> G(F(p11)))
(((((<> p0 -> p1) U (p3 -> p7)) \/ (<> p7 V (p0 U p0))) -> ! p6)) /\ (G(F(p10)) -> G(F(p11)))
(((X p4 U <> ([] p2 -> (p1 V p3))) \/ (! p6 U <> p4))) /\ (G(F(p10)) -> G(F(p11)))
(X ([] [] p2 U (X (X [] p7 U <> [] p2) -> (p4 /\ X p2)))) /\ (G(F(p10)) -> G(F(p11)))
((p5 -> (<> p2 U (((! ! p5 U (p2 -> ! p2)) U <> p1) V p5)))) /\ (G(F(p10)) -> G(F(p11)))
(X ((! (p4 /\ p1) \/ p6) U [] (<> (p6 U ! p6) V p4))) /\ (G(F(p10)) -> G(F(p11)))
((<> (p1 \/ ([] (p7 /\ p0) -> p5)) \/ (p4 U (p5 /\ p1)))) /\ (G(F(p10)) -> G(F(p11)))
((([] <> p0 -> ([] <> <> <> p2 V ((X p4 /\ X p5) U p6))) /\ ! p6)) /\ (G(F(p10)) -> G(F(p11)))
(([] ! (p5 V p7) V ((p0 V ! p2) U [] (p7 \/ ! [] [] p3)))) /\ (G(F(p10)) -> G(F(p11)))
((! [] p1 -> ((p4 U p0) V (! (p5 V p4) U ! [] (p7 V p5))))) /\ (G(F(p10)) -> G(F(p11)))
((<> X [] [] p2 \/ <> X <> ((p0 U p0) U (p1 /\ (p4 -> p3))))) /\ (G(F(p10)) -> G(F(p11)))
(! ((((p4 \/ p7) V p0) U (p2 U p4)) V (! p7 U ! p2))) /\ (G(F(p10)) -> G(F(p11)))
((! p3 U ((((! p7 \/ p6) -> ! p5) U (p2 V p1)) /\ ! ! p0))) /\ (G(F(p10)) -> G(F(p11)))
(((p3 U p2) U (<> (X (p4 /\ ! (p0 V X p6)) V <> p1) -> p3))) /\ (G(F(p10)) -> G(F(p11)))
((((p4 U (<> p0 V <> p1)) U p1) -> (((X p3 U (false /\ p6)) U false) U p5))) /\ (G(F(p10)) -> G(F(p11)))
(! [] (([] p4 -> (p7 V ! true)) \/ (! p3 V ! ! p2))) /\ (G(F(p10)) -> G(F(p11)))
(((p2 \/ p7) U ! (p6 \/ X ((p6 -> [] p1) V [] ! ((p3 U p7) U p5))))) /\ (G(F(p10)) -> G(F(p11)))
(<> (X ((! (p7 U true) U (p6 V p7)) V X p5) \/ X p4)) /\ (G(F(p10)) -> G(F(p11)))
(X <> <> ! ((! (p6 V true) -> X p3) V X ! (! p0 U p0))) /\ (G(F(p10)) -> G(F(p11)))
((((X (p5 U ! p1) U ! p1) U <> p0) U ! ((true -> p6) V [] [] true))) /\ (G(F(p10)) -> G(F(p11)))
(((<> p6 U X ((p1 /\ p7) U (X p1 \/ p6))) -> (<> [] p6 U <> p2))) /\ (G(F(p10)) -> G(F(p11)))
((((p5 U p7) U (p3 U <> p4)) -> (! p4 U X ! <> p3))) /\ (G(F(p10)) -> G(F(p11)))
((X (<> ([] p0 V X [] p0) U [] p5) U [] (<> p2 U [] p6))) /\ (G(F(p10)) -> G(F(p11)))
(<> ((((X p3 V X p7) U [] p5) U ((X p2 -> p1) U <> p2)) -> [] p5)) /\ (G(F(p10)) -> G(F(p11)))
((! p3 \/ (<> (p4 U (p4 U p3)) U ([] p6 -> <> p0)))) /\ (G(F(p10)) -> G(F(p11)))
(([] X ([] <> p4 U p6) -> [] ((p0 \/ X p0) -> ! <> (p3 U p6)))) /\ (G(F(p10)) -> G(F(p11)))
([] <> (<> ((p7 V (p7 \/ p6)) U p0) /\ X (X p1 -> ! ! p1))) /\ (G(F(p10)) -> G(F(p11)))
((<> (<> ((p4 U p6) \/ ! p3) U p3) -> [] (false \/ ([] p2 /\ p3)))) /\ (G(F(p10)) -> G(F(p11)))
(((p0 U p5) /\ [] (<> (p2 V ! p0) /\ <> [] ([] p2 V ! X p1)))) /\ (G(F(p10)) -> G(F(p11)))
((<> p2 -> (! p0 \/ <> ((! <> p4 -> ! p5) U p4)))) /\ (G(F(p10)) -> G(F(p11)))
((((p4 \/ X p5) U (p1 V p3)) V (<> <> (X p4 /\ p2) -> (p3 U p0)))) /\ (G(F(p10)) -> G(F(p11)))
(([] (p5 -> <> (p0 /\ p4)) U X <> (p5 U (! false -> p4)))) /\ (G(F(p10)) -> G(F(p11)))
((! ((p5 \/ <> X p2) U p3) V (<> (true U <> p0) \/ p1))) /\ (G(F(p10)) -> G(F(p11)))
((((! p1 U (p2 -> [] [] p3)) -> [] <> (p5 -> <> p3)) /\ [] X p4)) /\ (G(F(p10)) -> G(F(p11)))
(<> ((p1 U X p3) \/ <> X (([] p4 U (true U p3)) V ! (p4 U X p1)))) /\ (G(F(p10)) -> G(F(p11)))
((<> [] (! X p5 /\ <> (X p6 -> (p5 V p7))) U p5)) /\ (G(F(p10)) -> G(F(p11)))
((((p5 /\ p1) -> [] (<> (p1 U X p6) U (p5 U p5))) -> (X X p4 U p0))) /\ (G(F(p10)) -> G(F(p11)))
(([] <> p6 V (((p5 \/ p7) -> X X ! (p7 U p4)) U p0))) /\ (G(F(p10)) -> G(F(p11)))
((<> <> [] ((p6 \/ p6) V ! [] p5) \/ (X ! p6 U p0))) /\ (G(F(p10)) -> G(F(p11)))
(((p5 \/ (p3 U [] ! p7)) U <> X ((p0 \/ X p3) /\ ! ! p5))) /\ (G(F(p10)) -> G(F(p11)))
(<> ! <> [] ! (<> (p6 U p3) /\ [] ((<> [] p6 \/ p4) V p7))) /\ (G(F(p10)) -> G(F(p11)))
(((((p2 /\ (p1 \/ p2)) /\ p2) U X (p6 V p1)) U ((p7 -> ! p6) U p6))) /\ (G(F(p10)) -> G(F(p11)))
(((! p1 /\ p3) V [] <> ! <> (<> (p0 U p4) U X p7))) /\ (G(F(p10)) -> G(F(p11)))
(! (([] ((p2 U ! p1) U (p6 V p7)) \/ (<> p0 U p0)) -> (p3 U p0))) /\ (G(F(p10)) -> G(F(p11)))
(((! ! ((p1 \/ ((p2 V p0) V ! p1)) -> X p1) V ! p4) \/ p2)) /\ (G(F(p10)) -> G(F(p11)))
(((<> p0 U ! <> p7) \/ X (X ! [] X [] p5 U p4))) /\ (G(F(p10)) -> G(F(p11)))
((X (((p1 U p1) U p4) -> [] X ! p5) U (! p7 -> ! p5))) /\ (G(F(p10)) -> G(F(p11)))
((<> [] p0 V X ! (! p6 U (p3 V ! X ([] <> p1 \/ p1))))) /\ (G(F(p10)) -> G(F(p11)))
(([] (false U <> <> X p5) U (X p7 V [] (<> X p4 \/ (<> p2 -> p5))))) /\ (G(F(p10)) -> G(F(p11)))
((X [] p3 U <> ([] <> <> (p0 U false) \/ (! p5 \/ (! ! p2 -> p0))))) /\ (G(F(p10)) -> G(F(p11)))
((X p1 \/ ((X (! [] p0 U p7) U ! p0) U ! p2))) /\ (G(F(p10)) -> G(F(p11)))
(X ([] true U (X (p3 V [] p2) \/ (! p4 \/ <> p2)))) /\ (G(F(p10)) -> G(F(p11)))
([] (<> <> <> X ((p2 V ([] p3 /\ p2)) /\ ! <> [] p3) \/ p3)) /\ (G(F(p10)) -> G(F(p11)))
(X [] [] ((! p1 \/ p6) U <> X (! p2 U <> p1))) /\ (G(F(p10)) -> G(F(p11)))
(((true /\ [] p6) U X <> (<> ((p3 U p5) V [] (p6 -> p6)) U ! ! p3))) /\ (G(F(p10)) -> G(F(p11)))
((X ((p1 V <> ! p0) U p2) U [] ! <> ! X p4)) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(((p0 U (! <> <> p4 U <> X ! p5)) U [] (X p0 U X p0))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
([] ((<> p3 U p1) U ((((p1 U p5) \/ p5) U ! [] p0) /\ p1))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(! ((<> <> <> (p6 U p5) U <> X p1) /\ ! <> p2)) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(((<> p6 -> X X X p1) U (([] p3 \/ p6) V [] p3))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((X p4 -> ([] <> (X (X (p4 U ! p7) U <> p4) U [] p2) U p0))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((((p6 /\ <> false) V (! (<> p4 V p3) V [] p0)) V [] (p0 -> p5))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(! ((! p1 U p4) U (<> p7 U ((p0 -> ! p4) V [] p0)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(X (<> p0 /\ (! ! ((p0 U [] p6) U ! (p3 U p1)) V (p5 \/ <> p2)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(((! p4 /\ ((p2 U p0) U (! p6 -> (<> p2 \/ p6)))) -> X (p2 -> p1))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(((<> (p4 U <> p3) \/ [] [] (p2 U [] [] p1)) /\ ! ! (p5 U <> p3))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(([] <> (<> ! ! (p2 V p1) -> [] (p7 -> X p2)) -> <> ! X p2)) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(! (X (p1 /\ X X [] ! [] <> (p6 /\ X p1)) \/ (p5 -> p7))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(([] <> (<> ([] p3 -> [] X p3) V <> p3) U X X X p7)) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(<> ((p6 \/ p6) V ((<> [] X X X ! p1 U p1) -> <> p1))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(<> X <> X <> (X [] p2 -> (<> (true -> [] p2) /\ X p2))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((([] ! [] (p7 U p5) V X p0) -> (p5 -> [] X p5))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(([] [] (p2 \/ p1) -> (([] p3 U true) U X (X p6 U (p5 /\ <> p5))))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
([] ([] p1 /\ (<> p7 -> ((! p0 U p0) U <> <> p4)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(((p2 V p3) U ! ((<> p4 \/ p5) -> (! (p5 \/ p4) V p7)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((([] (<> (<> X p4 /\ [] p1) U p1) V [] <> X [] p5) U p1)) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(X [] X ! ((p4 U (p2 -> p1)) \/ ! (<> p5 \/ p4))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((((<> p7 U (p6 U p7)) -> (p4 -> p6)) -> <> X (p0 -> <> (<> p6 -> p0)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((p6 \/ ([] (p1 /\ p7) U <> (p4 U ((p2 \/ p7) -> [] (p3 U p7)))))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(((<> (p0 U p0) /\ [] p4) V ! <> (p2 /\ <> <> (p7 -> [] p7)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((<> X <> <> <> (p3 -> ([] ! p6 -> p5)) \/ (p5 \/ ! [] (p4 /\ p4)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(((X <> <> true U ! p1) V ((! ! p7 V p3) U ! (p1 /\ p5)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((<> [] (((p6 -> p1) V (p5 U p5)) U ! p2) /\ (<> (p2 U p5) /\ ! p4))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(([] (X ((p4 V (p5 /\ p7)) \/ (p1 U p5)) U ! p5) U (p2 U p6))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((! [] p5 /\ ((! (! p2 -> p6) \/ [] (p1 V p7)) U (<> p4 V [] p6)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((<> p7 U <> ((p1 U <> p4) U X ! X [] [] p3))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(<> ([] X ((p3 /\ p2) -> ! X <> p4) U ((p0 /\ <> p6) -> [] p2))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(<> [] [] (p4 /\ <> ((X p7 U p3) U <> (p5 U ([] p4 V p2))))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(X ([] ((p5 /\ ! [] p2) U p6) U (! p6 V (p6 \/ p7)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(((((p2 -> (p5 U p3)) U (p6 U p0)) V p3) -> [] [] p7)) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((([] p4 \/ X <> (X p6 U X p7)) /\ (p1 /\ ((p7 /\ X p2) \/ p1)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((! ((! [] p3 \/ ! p7) /\ p5) U (X ! (X p2 -> p0) \/ X [] p5))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(((! p5 -> ! p4) U ((p3 V X X p2) U (<> p7 U X p2)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(<> (X (<> X ((p3 U (p0 \/ p4)) U p6) U p1) V <> ! <> X ! p4)) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(! (<> p4 /\ <> (([] (p0 -> p4) /\ X p1) /\ X p0))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(<> ((((p2 /\ p7) -> X p4) U true) U X (p5 \/ ! false))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((X ((p2 /\ [] [] ! p1) U <> p5) \/ <> ! X [] (<> X p2 U p5))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((! (p1 -> [] ! ([] p3 U [] [] p6)) /\ (p3 U p2))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((p4 U <> (X ((<> ([] p1 V p5) U X p6) U <> p4) \/ (false \/ p1)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(<> (p6 U ! [] X <> (! (p3 U (X p6 U true)) -> (X X p5 V p4)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((([] p1 V ! p5) V <> ! ([] ! [] p2 U [] p4))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(((((<> p0 -> p1) U (p3 -> p7)) \/ (<> p7 V (p0 U p0))) -> ! p6)) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(((X p4 U <> ([] p2 -> (p1 V p3))) \/ (! p6 U <> p4))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(X ([] [] p2 U (X (X [] p7 U <> [] p2) -> (p4 /\ X p2)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((p5 -> (<> p2 U (((! ! p5 U (p2 -> ! p2)) U <> p1) V p5)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(X ((! (p4 /\ p1) \/ p6) U [] (<> (p6 U ! p6) V p4))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((<> (p1 \/ ([] (p7 /\ p0) -> p5)) \/ (p4 U (p5 /\ p1)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((([] <> p0 -> ([] <> <> <> p2 V ((X p4 /\ X p5) U p6))) /\ ! p6)) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(([] ! (p5 V p7) V ((p0 V ! p2) U [] (p7 \/ ! [] [] p3)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((! [] p1 -> ((p4 U p0) V (! (p5 V p4) U ! [] (p7 V p5))))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((<> X [] [] p2 \/ <> X <> ((p0 U p0) U (p1 /\ (p4 -> p3))))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(! ((((p4 \/ p7) V p0) U (p2 U p4)) V (! p7 U ! p2))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((! p3 U ((((! p7 \/ p6) -> ! p5) U (p2 V p1)) /\ ! ! p0))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(((p3 U p2) U (<> (X (p4 /\ ! (p0 V X p6)) V <> p1) -> p3))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((((p4 U (<> p0 V <> p1)) U p1) -> (((X p3 U (false /\ p6)) U false) U p5))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(! [] (([] p4 -> (p7 V ! true)) \/ (! p3 V ! ! p2))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(((p2 \/ p7) U ! (p6 \/ X ((p6 -> [] p1) V [] ! ((p3 U p7) U p5))))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(<> (X ((! (p7 U true) U (p6 V p7)) V X p5) \/ X p4)) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(X <> <> ! ((! (p6 V true) -> X p3) V X ! (! p0 U p0))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((((X (p5 U ! p1) U ! p1) U <> p0) U ! ((true -> p6) V [] [] true))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(((<> p6 U X ((p1 /\ p7) U (X p1 \/ p6))) -> (<> [] p6 U <> p2))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((((p5 U p7) U (p3 U <> p4)) -> (! p4 U X ! <> p3))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((X (<> ([] p0 V X [] p0) U [] p5) U [] (<> p2 U [] p6))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(<> ((((X p3 V X p7) U [] p5) U ((X p2 -> p1) U <> p2)) -> [] p5)) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((! p3 \/ (<> (p4 U (p4 U p3)) U ([] p6 -> <> p0)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(([] X ([] <> p4 U p6) -> [] ((p0 \/ X p0) -> ! <> (p3 U p6)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
([] <> (<> ((p7 V (p7 \/ p6)) U p0) /\ X (X p1 -> ! ! p1))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((<> (<> ((p4 U p6) \/ ! p3) U p3) -> [] (false \/ ([] p2 /\ p3)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(((p0 U p5) /\ [] (<> (p2 V ! p0) /\ <> [] ([] p2 V ! X p1)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((<> p2 -> (! p0 \/ <> ((! <> p4 -> ! p5) U p4)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((((p4 \/ X p5) U (p1 V p3)) V (<> <> (X p4 /\ p2) -> (p3 U p0)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(([] (p5 -> <> (p0 /\ p4)) U X <> (p5 U (! false -> p4)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((! ((p5 \/ <> X p2) U p3) V (<> (true U <> p0) \/ p1))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((((! p1 U (p2 -> [] [] p3)) -> [] <> (p5 -> <> p3)) /\ [] X p4)) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(<> ((p1 U X p3) \/ <> X (([] p4 U (true U p3)) V ! (p4 U X p1)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((<> [] (! X p5 /\ <> (X p6 -> (p5 V p7))) U p5)) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((((p5 /\ p1) -> [] (<> (p1 U X p6) U (p5 U p5))) -> (X X p4 U p0))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(([] <> p6 V (((p5 \/ p7) -> X X ! (p7 U p4)) U p0))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((<> <> [] ((p6 \/ p6) V ! [] p5) \/ (X ! p6 U p0))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(((p5 \/ (p3 U [] ! p7)) U <> X ((p0 \/ X p3) /\ ! ! p5))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(<> ! <> [] ! (<> (p6 U p3) /\ [] ((<> [] p6 \/ p4) V p7))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(((((p2 /\ (p1 \/ p2)) /\ p2) U X (p6 V p1)) U ((p7 -> ! p6) U p6))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(((! p1 /\ p3) V [] <> ! <> (<> (p0 U p4) U X p7))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(! (([] ((p2 U ! p1) U (p6 V p7)) \/ (<> p0 U p0)) -> (p3 U p0))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(((! ! ((p1 \/ ((p2 V p0) V ! p1)) -> X p1) V ! p4) \/ p2)) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(((<> p0 U ! <> p7) \/ X (X ! [] X [] p5 U p4))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((X (((p1 U p1) U p4) -> [] X ! p5) U (! p7 -> ! p5))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((<> [] p0 V X ! (! p6 U (p3 V ! X ([] <> p1 \/ p1))))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(([] (false U <> <> X p5) U (X p7 V [] (<> X p4 \/ (<> p2 -> p5))))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((X [] p3 U <> ([] <> <> (p0 U false) \/ (! p5 \/ (! ! p2 -> p0))))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
((X p1 \/ ((X (! [] p0 U p7) U ! p0) U ! p2))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(X ([] true U (X (p3 V [] p2) \/ (! p4 \/ <> p2)))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
([] (<> <> <> X ((p2 V ([] p3 /\ p2)) /\ ! <> [] p3) \/ p3)) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(X [] [] ((! p1 \/ p6) U <> X (! p2 U <> p1))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(((true /\ [] p6) U X <> (<> ((p3 U p5) V [] (p6 -> p6)) U ! ! p3))) /\ (G(F(p10)) -> G(F(p11))) /\ (G(F(p12)) -> G(F(p13)))
(X ((p1 V <> ! p0) U p2) U [] ! <> ! X p4)
((p0 U (! <> <> p4 U <> X ! p5)) U [] (X p0 U X p0))
[] ((<> p3 U p1) U ((((p1 U p5) \/ p5) U ! [] p0) /\ p1))
! ((<> <> <> (p6 U p5) U <> X p1) /\ ! <> p2)
((<> p6 -> X X X p1) U (([] p3 \/ p6) V [] p3))
(X p4 -> ([] <> (X (X (p4 U ! p7) U <> p4) U [] p2) U p0))
(((p6 /\ <> false) V (! (<> p4 V p3) V [] p0)) V [] (p0 -> p5))
! ((! p1 U p4) U (<> p7 U ((p0 -> ! p4) V [] p0)))
X (<> p0 /\ (! ! ((p0 U [] p6) U ! (p3 U p1)) V (p5 \/ <> p2)))
((! p4 /\ ((p2 U p0) U (! p6 -> (<> p2 \/ p6)))) -> X (p2 -> p1))
((<> (p4 U <> p3) \/ [] [] (p2 U [] [] p1)) /\ ! ! (p5 U <> p3))
([] <> (<> ! ! (p2 V p1) -> [] (p7 -> X p2)) -> <> ! X p2)
! (X (p1 /\ X X [] ! [] <> (p6 /\ X p1)) \/ (p5 -> p7))
([] <> (<> ([] p3 -> [] X p3) V <> p3) U X X X p7)
<> ((p6 \/ p6) V ((<> [] X X X ! p1 U p1) -> <> p1))
<> X <> X <> (X [] p2 -> (<> (true -> [] p2) /\ X p2))
(([] ! [] (p7 U p5) V X p0) -> (p5 -> [] X p5))
([] [] (p2 \/ p1) -> (([] p3 U true) U X (X p6 U (p5 /\ <> p5))))
[] ([] p1 /\ (<> p7 -> ((! p0 U p0) U <> <> p4)))
((p2 V p3) U ! ((<> p4 \/ p5) -> (! (p5 \/ p4) V p7)))
(([] (<> (<> X p4 /\ [] p1) U p1) V [] <> X [] p5) U p1)
X [] X ! ((p4 U (p2 -> p1)) \/ ! (<> p5 \/ p4))
(((<> p7 U (p6 U p7)) -> (p4 -> p6)) -> <> X (p0 -> <> (<> p6 -> p0)))
(p6 \/ ([] (p1 /\ p7) U <> (p4 U ((p2 \/ p7) -> [] (p3 U p7)))))
((<> (p0 U p0) /\ [] p4) V ! <> (p2 /\ <> <> (p7 -> [] p7)))
(<> X <> <> <> (p3 -> ([] ! p6 -> p5)) \/ (p5 \/ ! [] (p4 /\ p4)))
((X <> <> true U ! p1) V ((! ! p7 V p3) U ! (p1 /\ p5)))
(<> [] (((p6 -> p1) V (p5 U p5)) U ! p2) /\ (<> (p2 U p5) /\ ! p4))
([] (X ((p4 V (p5 /\ p7)) \/ (p1 U p5)) U ! p5) U (p2 U p6))
(! [] p5 /\ ((! (! p2 -> p6) \/ [] (p1 V p7)) U (<> p4 V [] p6)))
(<> p7 U <> ((p1 U <> p4) U X ! X [] [] p3))
<> ([] X ((p3 /\ p2) -> ! X <> p4) U ((p0 /\ <> p6) -> [] p2))
<> [] [] (p4 /\ <> ((X p7 U p3) U <> (p5 U ([] p4 V p2))))
X ([] ((p5 /\ ! [] p2) U p6) U (! p6 V (p6 \/ p7)))
((((p2 -> (p5 U p3)) U (p6 U p0)) V p3) -> [] [] p7)
(([] p4 \/ X <> (X p6 U X p7)) /\ (p1 /\ ((p7 /\ X p2) \/ p1)))