Commit dd1cd89a authored by Alexandre Duret-Lutz's avatar Alexandre Duret-Lutz
Browse files

event./univ. and syntactic implications rewriting in ltl_simplifier.

* src/ltlvisit/reduce.cc (reduce_visitor): Move ...
* src/ltlvisit/simplify.cc (simplify_visitor): ... here, and
adjust to use the new ltl_simplifier_options.
* src/ltlvisit/reduce.cc (reduce): Use ltl_simplifier
to perform the work of reduce_visitor.  Eventually we want to
get rid of reduce.cc.
* src/ltlvisit/reduce.hh (reduce): Remove the
syntactic_implication_cache used as third argument.
parent 503bdb5b
......@@ -23,7 +23,6 @@
#include "reduce.hh"
#include "basicreduce.hh"
#include "syntimpl.hh"
#include "ltlast/allnodes.hh"
#include <cassert>
......@@ -31,403 +30,27 @@
#include "simpfg.hh"
#include "nenoform.hh"
#include "contain.hh"
#include "simplify.hh"
namespace spot
{
namespace ltl
{
namespace
{
/////////////////////////////////////////////////////////////////////////
class reduce_visitor: public visitor
{
public:
reduce_visitor(int opt, syntactic_implication_cache* c)
: opt_(opt), c_(c)
{
}
virtual ~reduce_visitor()
{
}
formula*
result() const
{
return result_;
}
void
visit(atomic_prop* ap)
{
formula* f = ap->clone();
result_ = f;
}
void
visit(constant* c)
{
result_ = c;
}
void
visit(bunop* bo)
{
result_ = bunop::instance(bo->op(), recurse(bo->child()),
bo->min(), bo->max());
}
void
visit(unop* uo)
{
result_ = recurse(uo->child());
switch (uo->op())
{
case unop::F:
/* If f is a pure eventuality formula then F(f)=f. */
if (!(opt_ & Reduce_Eventuality_And_Universality)
|| !result_->is_eventual())
result_ = unop::instance(unop::F, result_);
return;
case unop::G:
/* If f is a pure universality formula then G(f)=f. */
if (!(opt_ & Reduce_Eventuality_And_Universality)
|| !result_->is_universal())
result_ = unop::instance(unop::G, result_);
return;
case unop::Not:
case unop::X:
case unop::Finish:
case unop::Closure:
case unop::NegClosure:
result_ = unop::instance(uo->op(), result_);
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(binop* bo)
{
binop::type op = bo->op();
formula* f2 = recurse(bo->second());
if (opt_ & Reduce_Eventuality_And_Universality)
{
/* If b is a pure eventuality formula then a U b = b.
If b is a pure universality formula a R b = b. */
if ((f2->is_eventual() && (op == binop::U))
|| (f2->is_universal() && (op == binop::R)))
{
result_ = f2;
return;
}
}
formula* f1 = recurse(bo->first());
if (opt_ & Reduce_Eventuality_And_Universality)
{
/* If a is a pure eventuality formula then a M b = a & b.
If a is a pure universality formula a W b = a|b. */
if (f1->is_eventual() && (op == binop::M))
{
result_ = multop::instance(multop::And, f1, f2);
return;
}
if (f1->is_universal() && (op == binop::W))
{
result_ = multop::instance(multop::Or, f1, f2);
return;
}
}
/* case of implies */
if (opt_ & Reduce_Syntactic_Implications)
{
switch (op)
{
case binop::Xor:
case binop::Equiv:
case binop::Implies:
assert(!"operator not supported for syntactic implication");
return;
case binop::UConcat:
case binop::EConcat:
case binop::EConcatMarked:
break;
case binop::U:
/* a < b => a U b = b */
if (c_->syntactic_implication(f1, f2))
{
result_ = f2;
f1->destroy();
return;
}
/* !b < a => a U b = Fb */
if (c_->syntactic_implication_neg(f2, f1, false))
{
result_ = unop::instance(unop::F, f2);
f1->destroy();
return;
}
/* a < b => a U (b U c) = (b U c) */
/* a < b => a U (b W c) = (b W c) */
if (f2->kind() == formula::BinOp)
{
binop* bo = static_cast<binop*>(f2);
if ((bo->op() == binop::U || bo->op() == binop::W)
&& c_->syntactic_implication(f1, bo->first()))
{
result_ = f2;
f1->destroy();
return;
}
}
break;
case binop::R:
/* b < a => a R b = b */
if (c_->syntactic_implication(f2, f1))
{
result_ = f2;
f1->destroy();
return;
}
/* b < !a => a R b = Gb */
if (c_->syntactic_implication_neg(f2, f1, true))
{
result_ = unop::instance(unop::G, f2);
f1->destroy();
return;
}
if (f2->kind() == formula::BinOp)
{
/* b < a => a R (b R c) = b R c */
/* b < a => a R (b M c) = b M c */
binop* bo = static_cast<binop*>(f2);
if ((bo->op() == binop::R || bo->op() == binop::M)
&& c_->syntactic_implication(bo->first(), f1))
{
result_ = f2;
f1->destroy();
return;
}
/* a < b => a R (b R c) = a R c */
if (bo->op() == binop::R
&& c_->syntactic_implication(f1, bo->first()))
{
result_ = binop::instance(binop::R, f1,
bo->second()->clone());
f2->destroy();
return;
}
}
break;
case binop::W:
/* a < b => a W b = b */
if (c_->syntactic_implication(f1, f2))
{
result_ = f2;
f1->destroy();
return;
}
/* !b < a => a W b = 1 */
if (c_->syntactic_implication_neg(f2, f1, false))
{
result_ = constant::true_instance();
f1->destroy();
f2->destroy();
return;
}
/* a < b => a W (b W c) = (b W c) */
if (f2->kind() == formula::BinOp)
{
binop* bo = static_cast<binop*>(f2);
if (bo->op() == binop::W
&& c_->syntactic_implication(f1, bo->first()))
{
result_ = f2;
f1->destroy();
return;
}
}
break;
case binop::M:
/* b < a => a M b = b */
if (c_->syntactic_implication(f2, f1))
{
result_ = f2;
f1->destroy();
return;
}
/* b < !a => a M b = 0 */
if (c_->syntactic_implication_neg(f2, f1, true))
{
result_ = constant::false_instance();
f1->destroy();
f2->destroy();
return;
}
if (f2->kind() == formula::BinOp)
{
/* b < a => a M (b M c) = b M c */
binop* bo = static_cast<binop*>(f2);
if (bo->op() == binop::M
&& c_->syntactic_implication(bo->first(), f1))
{
result_ = f2;
f1->destroy();
return;
}
/* a < b => a M (b M c) = a M c */
/* a < b => a M (b R c) = a M c */
if ((bo->op() == binop::M || bo->op() == binop::R)
&& c_->syntactic_implication(f1, bo->first()))
{
result_ = binop::instance(binop::M, f1,
bo->second()->clone());
f2->destroy();
return;
}
}
break;
}
}
result_ = binop::instance(op, f1, f2);
}
void
visit(automatop*)
{
assert(0);
}
void
visit(multop* mo)
{
unsigned mos = mo->size();
multop::vec* res = new multop::vec;
for (unsigned i = 0; i < mos; ++i)
res->push_back(recurse(mo->nth(i)));
if ((opt_ & Reduce_Syntactic_Implications)
&& (mo->op() != multop::Concat)
&& (mo->op() != multop::Fusion))
{
bool removed = true;
multop::vec::iterator f1;
multop::vec::iterator f2;
while (removed)
{
removed = false;
f2 = f1 = res->begin();
++f1;
while (f1 != res->end())
{
assert(f1 != f2);
// a < b => a + b = b
// a < b => a & b = a
if ((c_->syntactic_implication(*f1, *f2) && // f1 < f2
(mo->op() == multop::Or)) ||
((c_->syntactic_implication(*f2, *f1)) && // f2 < f1
(mo->op() == multop::And)))
{
// We keep f2
(*f1)->destroy();
res->erase(f1);
removed = true;
break;
}
else if ((c_->syntactic_implication(*f2, *f1) // f2 < f1
&& (mo->op() == multop::Or)) ||
((c_->syntactic_implication(*f1, *f2)) // f1 < f2
&& (mo->op() == multop::And)))
{
// We keep f1
(*f2)->destroy();
res->erase(f2);
removed = true;
break;
}
else
++f1;
}
}
// We cannot run syntactic_implication_neg on SERE
// formulae, unless they are just Boolean formulae.
if (mo->is_boolean() || !mo->is_sere_formula())
{
bool is_and = mo->op() != multop::Or;
/* f1 < !f2 => f1 & f2 = false
!f1 < f2 => f1 | f2 = true */
for (f1 = res->begin(); f1 != res->end(); f1++)
for (f2 = res->begin(); f2 != res->end(); f2++)
if (f1 != f2 &&
c_->syntactic_implication_neg(*f1, *f2, is_and))
{
for (multop::vec::iterator j = res->begin();
j != res->end(); j++)
(*j)->destroy();
res->clear();
delete res;
if (is_and)
result_ = constant::false_instance();
else
result_ = constant::true_instance();
return;
}
}
}
if (!res->empty())
{
result_ = multop::instance(mo->op(), res);
return;
}
assert(0);
}
formula*
recurse(formula* f)
{
return reduce(f, opt_, c_);
}
protected:
formula* result_;
int opt_;
syntactic_implication_cache* c_;
};
} // anonymous
formula*
reduce(const formula* f, int opt, syntactic_implication_cache* c)
reduce(const formula* f, int opt)
{
formula* f1;
formula* f2;
formula* prev = 0;
syntactic_implication_cache* sic =
c ? c : new syntactic_implication_cache;
ltl_simplifier_options o;
o.reduce_basics = opt & Reduce_Basics;
o.synt_impl = opt & Reduce_Syntactic_Implications;
o.event_univ = opt & Reduce_Eventuality_And_Universality;
o.containment_checks = opt & Reduce_Containment_Checks;
o.containment_checks_stronger = opt & Reduce_Containment_Checks_Stronger;
ltl_simplifier simplifier(o);
int n = 0;
......@@ -458,16 +81,9 @@ namespace spot
f2 = f1;
}
if (opt & (Reduce_Syntactic_Implications
| Reduce_Eventuality_And_Universality))
{
reduce_visitor v(opt, sic);
f2->accept(v);
f1 = v.result();
f2->destroy();
f2 = f1;
}
f1 = simplifier.simplify(f2);
f2->destroy();
f2 = f1;
if (opt & (Reduce_Containment_Checks
| Reduce_Containment_Checks_Stronger))
......@@ -482,9 +98,6 @@ namespace spot
}
prev->destroy();
if (c == 0)
delete sic;
return const_cast<formula*>(f);
}
......
// Copyright (C) 2004, 2006, 2010 Laboratoire d'Informatique de Paris 6 (LIP6),
// Copyright (C) 2004, 2006, 2010, 2011 Laboratoire d'Informatique de Paris 6 (LIP6),
// département Systèmes Répartis Coopératifs (SRC), Université Pierre
// et Marie Curie.
//
......@@ -52,16 +52,13 @@ namespace spot
Reduce_All = -1U
};
class syntactic_implication_cache;
/// \brief Reduce a formula \a f.
///
/// \param f the formula to reduce
/// \param opt a conjonction of spot::ltl::reduce_options specifying
/// which optimizations to apply.
/// \return the reduced formula
formula* reduce(const formula* f, int opt = Reduce_All,
syntactic_implication_cache* c = 0);
formula* reduce(const formula* f, int opt = Reduce_All);
/// @}
/// \brief Check whether a formula is a pure eventuality.
......
......@@ -24,6 +24,7 @@
#include "tgba/bdddict.hh"
#include "ltlast/allnodes.hh"
#include "ltlast/visitor.hh"
#include "ltlvisit/syntimpl.hh"
#include <cassert>
namespace spot
......@@ -40,6 +41,7 @@ namespace spot
ptr_hash<formula> > f2b_map;
public:
ltl_simplifier_options options;
syntactic_implication_cache syntimpl;
~ltl_simplifier_cache()
{
......@@ -191,6 +193,21 @@ namespace spot
nenoform_[orig->clone()] = nenoform->clone();
}
// Return true if f1 < f2 (i.e. f1 implies f2 syntactically)
bool
syntactic_implication(const formula* f1, const formula* f2)
{
return syntimpl.syntactic_implication(f1, f2);
}
// If right==false, true if !f1 < f2, false otherwise.
// If right==true, true if f1 < !f2, false otherwise.
bool syntactic_implication_neg(const formula* f1, const formula* f2,
bool right)
{
return syntimpl.syntactic_implication_neg(f1, f2, right);
}
const formula*
lookup_simplified(const formula* f)
{
......@@ -507,25 +524,406 @@ namespace spot
return result;
}
}
// Forward declaration.
const formula*
simplify_recursively(const formula* f, ltl_simplifier_cache* c);
class simplify_visitor: public visitor
{
public:
simplify_visitor(ltl_simplifier_cache* cache)
: c_(cache), opt_(cache->options)
{
}
const formula*
simplify_recursively(const formula* f,
ltl_simplifier_cache* c)
{
const formula* result = c->lookup_simplified(f);
if (result)
return result;
virtual ~simplify_visitor()
{
}
formula*
result() const
{
return result_;
}
void
visit(atomic_prop* ap)
{
formula* f = ap->clone();
result_ = f;
}
void
visit(constant* c)
{
result_ = c;
}
void
visit(bunop* bo)
{
result_ = bunop::instance(bo->op(), recurse(bo->child()),
bo->min(), bo->max());
}
result = 0;// XXX
void
visit(unop* uo)
{
result_ = recurse(uo->child());
switch (uo->op())
{
case unop::F:
/* If f is a pure eventuality formula then F(f)=f. */
if (!opt_.event_univ || !result_->is_eventual())
result_ = unop::instance(unop::F, result_);
return;
case unop::G:
/* If f is a pure universality formula then G(f)=f. */
if (!opt_.event_univ || !result_->is_universal())
result_ = unop::instance(unop::G, result_);
return;
case unop::Not:
case unop::X:
case unop::Finish:
case unop::Closure:
case unop::NegClosure:
result_ = unop::instance(uo->op(), result_);
return;
}
/* Unreachable code. */
assert(0);
}
void
visit(binop* bo)
{
binop::type op = bo->op();
formula* f2 = recurse(bo->second());
if (opt_.event_univ)
{
/* If b is a pure eventuality formula then a U b = b.
If b is a pure universality formula a R b = b. */
if ((f2->is_eventual() && (op == binop::U))
|| (f2->is_universal() && (op == binop::R)))
{
result_ = f2;
return;
}
}
formula* f1 = recurse(bo->first());
if (opt_.event_univ)
{
/* If a is a pure eventuality formula then a M b = a & b.
If a is a pure universality formula a W b = a|b. */
if (f1->is_eventual() && (op == binop::M))
{
result_ = multop::instance(multop::And, f1, f2);
return;
}
if (f1->is_universal() && (op == binop::W))