// -*- coding: utf-8 -*-
// Copyright (C) 2011, 2012, 2014-2018 Laboratoire de
// Recherche et Développement de l'Epita (LRDE)
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
#include "config.h"
#include
#include
#include
#include
#include
#include
#include
// MinGW does not define this.
#ifndef WEXITSTATUS
# define WEXITSTATUS(x) ((x) & 0xff)
#endif
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
namespace spot
{
namespace
{
////////////////////////////////////////////////////////////////////////
// spins interface
typedef struct transition_info {
int* labels; // edge labels, NULL, or pointer to the edge label(s)
int group; // holds transition group or -1 if unknown
} transition_info_t;
typedef void (*TransitionCB)(void *ctx,
transition_info_t *transition_info,
int *dst);
}
struct spins_interface
{
lt_dlhandle handle; // handle to the dynamic library
void (*get_initial_state)(void *to);
int (*have_property)();
int (*get_successors)(void* m, int *in, TransitionCB, void *arg);
int (*get_state_size)();
const char* (*get_state_variable_name)(int var);
int (*get_state_variable_type)(int var);
int (*get_type_count)();
const char* (*get_type_name)(int type);
int (*get_type_value_count)(int type);
const char* (*get_type_value_name)(int type, int value);
~spins_interface()
{
if (handle)
lt_dlclose(handle);
lt_dlexit();
}
};
namespace
{
typedef std::shared_ptr spins_interface_ptr;
////////////////////////////////////////////////////////////////////////
// STATE
struct spins_state final: public state
{
spins_state(int s, fixed_size_pool* p)
: pool(p), size(s), count(1)
{
}
void compute_hash()
{
hash_value = 0;
for (int i = 0; i < size; ++i)
hash_value = wang32_hash(hash_value ^ vars[i]);
}
spins_state* clone() const override
{
++count;
return const_cast(this);
}
void destroy() const override
{
if (--count)
return;
pool->deallocate(this);
}
size_t hash() const override
{
return hash_value;
}
int compare(const state* other) const override
{
if (this == other)
return 0;
const spins_state* o = down_cast(other);
if (hash_value < o->hash_value)
return -1;
if (hash_value > o->hash_value)
return 1;
return memcmp(vars, o->vars, size * sizeof(*vars));
}
private:
~spins_state()
{
}
public:
fixed_size_pool* pool;
size_t hash_value: 32;
int size: 16;
mutable unsigned count: 16;
int vars[1];
};
struct spins_compressed_state final: public state
{
spins_compressed_state(int s, multiple_size_pool* p)
: pool(p), size(s), count(1)
{
}
void compute_hash()
{
hash_value = 0;
for (int i = 0; i < size; ++i)
hash_value = wang32_hash(hash_value ^ vars[i]);
}
spins_compressed_state* clone() const override
{
++count;
return const_cast(this);
}
void destroy() const override
{
if (--count)
return;
pool->deallocate(this, sizeof(*this) - sizeof(vars)
+ size * sizeof(*vars));
}
size_t hash() const override
{
return hash_value;
}
int compare(const state* other) const override
{
if (this == other)
return 0;
const spins_compressed_state* o =
down_cast(other);
if (hash_value < o->hash_value)
return -1;
if (hash_value > o->hash_value)
return 1;
if (size < o->size)
return -1;
if (size > o->size)
return 1;
return memcmp(vars, o->vars, size * sizeof(*vars));
}
private:
~spins_compressed_state()
{
}
public:
multiple_size_pool* pool;
size_t hash_value: 32;
int size: 16;
mutable unsigned count: 16;
int vars[1];
};
////////////////////////////////////////////////////////////////////////
// CALLBACK FUNCTION for transitions.
struct callback_context
{
typedef std::list transitions_t;
transitions_t transitions;
int state_size;
void* pool;
int* compressed;
void (*compress)(const int*, size_t, int*, size_t&);
~callback_context()
{
for (auto t: transitions)
t->destroy();
}
};
void transition_callback(void* arg, transition_info_t*, int *dst)
{
callback_context* ctx = static_cast(arg);
fixed_size_pool* p = static_cast(ctx->pool);
spins_state* out =
new(p->allocate()) spins_state(ctx->state_size, p);
memcpy(out->vars, dst, ctx->state_size * sizeof(int));
out->compute_hash();
ctx->transitions.emplace_back(out);
}
void transition_callback_compress(void* arg, transition_info_t*, int *dst)
{
callback_context* ctx = static_cast(arg);
multiple_size_pool* p = static_cast(ctx->pool);
size_t csize = ctx->state_size * 2;
ctx->compress(dst, ctx->state_size, ctx->compressed, csize);
void* mem = p->allocate(sizeof(spins_compressed_state)
- sizeof(spins_compressed_state::vars)
+ sizeof(int) * csize);
spins_compressed_state* out = new(mem) spins_compressed_state(csize, p);
memcpy(out->vars, ctx->compressed, csize * sizeof(int));
out->compute_hash();
ctx->transitions.emplace_back(out);
}
////////////////////////////////////////////////////////////////////////
// SUCC_ITERATOR
class spins_succ_iterator final: public kripke_succ_iterator
{
public:
spins_succ_iterator(const callback_context* cc,
bdd cond)
: kripke_succ_iterator(cond), cc_(cc)
{
}
void recycle(const callback_context* cc, bdd cond)
{
delete cc_;
cc_ = cc;
kripke_succ_iterator::recycle(cond);
}
~spins_succ_iterator()
{
delete cc_;
}
virtual bool first() override
{
it_ = cc_->transitions.begin();
return it_ != cc_->transitions.end();
}
virtual bool next() override
{
++it_;
return it_ != cc_->transitions.end();
}
virtual bool done() const override
{
return it_ == cc_->transitions.end();
}
virtual state* dst() const override
{
return (*it_)->clone();
}
private:
const callback_context* cc_;
callback_context::transitions_t::const_iterator it_;
};
////////////////////////////////////////////////////////////////////////
// PREDICATE EVALUATION
typedef enum { OP_EQ, OP_NE, OP_LT, OP_GT, OP_LE, OP_GE } relop;
struct one_prop
{
int var_num;
relop op;
int val;
int bddvar; // if "var_num op val" is true, output bddvar,
// else its negation
};
typedef std::vector prop_set;
struct var_info
{
int num;
int type;
};
void
convert_aps(const atomic_prop_set* aps,
spins_interface_ptr d,
bdd_dict_ptr dict,
formula dead,
prop_set& out)
{
int errors = 0;
std::ostringstream err;
int state_size = d->get_state_size();
typedef std::map val_map_t;
val_map_t val_map;
for (int i = 0; i < state_size; ++i)
{
const char* name = d->get_state_variable_name(i);
int type = d->get_state_variable_type(i);
var_info v = { i , type };
val_map[name] = v;
}
int type_count = d->get_type_count();
typedef std::map enum_map_t;
std::vector enum_map(type_count);
for (int i = 0; i < type_count; ++i)
{
int enum_count = d->get_type_value_count(i);
for (int j = 0; j < enum_count; ++j)
enum_map[i].emplace(d->get_type_value_name(i, j), j);
}
for (atomic_prop_set::const_iterator ap = aps->begin();
ap != aps->end(); ++ap)
{
if (*ap == dead)
continue;
const std::string& str = ap->ap_name();
const char* s = str.c_str();
// Skip any leading blank.
while (*s && (*s == ' ' || *s == '\t'))
++s;
if (!*s)
{
err << "Proposition `" << str << "' cannot be parsed.\n";
++errors;
continue;
}
char* name = (char*) malloc(str.size() + 1);
char* name_p = name;
char* lastdot = nullptr;
while (*s && (*s != '=') && *s != '<' && *s != '!' && *s != '>')
{
if (*s == ' ' || *s == '\t')
++s;
else
{
if (*s == '.')
lastdot = name_p;
*name_p++ = *s++;
}
}
*name_p = 0;
if (name == name_p)
{
err << "Proposition `" << str << "' cannot be parsed.\n";
free(name);
++errors;
continue;
}
// Lookup the name
val_map_t::const_iterator ni = val_map.find(name);
if (ni == val_map.end())
{
// We may have a name such as X.Y.Z
// If it is not a known variable, it might mean
// an enumerated variable X.Y with value Z.
if (lastdot)
{
*lastdot++ = 0;
ni = val_map.find(name);
}
if (ni == val_map.end())
{
err << "No variable `" << name
<< "' found in model (for proposition `"
<< str << "').\n";
free(name);
++errors;
continue;
}
// We have found the enumerated variable, and lastdot is
// pointing to its expected value.
int type_num = ni->second.type;
enum_map_t::const_iterator ei = enum_map[type_num].find(lastdot);
if (ei == enum_map[type_num].end())
{
err << "No state `" << lastdot << "' known for variable `"
<< name << "'.\n";
err << "Possible states are:";
for (auto& ej: enum_map[type_num])
err << ' ' << ej.first;
err << '\n';
free(name);
++errors;
continue;
}
// At this point, *s should be 0.
if (*s)
{
err << "Trailing garbage `" << s
<< "' at end of proposition `"
<< str << "'.\n";
free(name);
++errors;
continue;
}
// Record that X.Y must be equal to Z.
int v = dict->register_proposition(*ap, d.get());
one_prop p = { ni->second.num, OP_EQ, ei->second, v };
out.emplace_back(p);
free(name);
continue;
}
int var_num = ni->second.num;
if (!*s) // No operator? Assume "!= 0".
{
int v = dict->register_proposition(*ap, d);
one_prop p = { var_num, OP_NE, 0, v };
out.emplace_back(p);
free(name);
continue;
}
relop op;
switch (*s)
{
case '!':
if (s[1] != '=')
goto report_error;
op = OP_NE;
s += 2;
break;
case '=':
if (s[1] != '=')
goto report_error;
op = OP_EQ;
s += 2;
break;
case '<':
if (s[1] == '=')
{
op = OP_LE;
s += 2;
}
else
{
op = OP_LT;
++s;
}
break;
case '>':
if (s[1] == '=')
{
op = OP_GE;
s += 2;
}
else
{
op = OP_GT;
++s;
}
break;
default:
report_error:
err << "Unexpected `" << s
<< "' while parsing atomic proposition `" << str
<< "'.\n";
++errors;
free(name);
continue;
}
while (*s && (*s == ' ' || *s == '\t'))
++s;
int val = 0; // Initialize to kill a warning from old compilers.
int type_num = ni->second.type;
if (type_num == 0 || (*s >= '0' && *s <= '9') || *s == '-')
{
char* s_end;
val = strtol(s, &s_end, 10);
if (s == s_end)
{
err << "Failed to parse `" << s << "' as an integer.\n";
++errors;
free(name);
continue;
}
s = s_end;
}
else
{
// We are in a case such as P_0 == S, trying to convert
// the string S into an integer.
const char* end = s;
while (*end && *end != ' ' && *end != '\t')
++end;
std::string st(s, end);
// Lookup the string.
enum_map_t::const_iterator ei = enum_map[type_num].find(st);
if (ei == enum_map[type_num].end())
{
err << "No state `" << st << "' known for variable `"
<< name << "'.\n";
err << "Possible states are:";
for (ei = enum_map[type_num].begin();
ei != enum_map[type_num].end(); ++ei)
err << ' ' << ei->first;
err << '\n';
free(name);
++errors;
continue;
}
s = end;
val = ei->second;
}
free(name);
while (*s && (*s == ' ' || *s == '\t'))
++s;
if (*s)
{
err << "Unexpected `" << s
<< "' while parsing atomic proposition `" << str
<< "'.\n";
++errors;
continue;
}
int v = dict->register_proposition(*ap, d);
one_prop p = { var_num, op, val, v };
out.emplace_back(p);
}
if (errors)
throw std::runtime_error(err.str());
}
////////////////////////////////////////////////////////////////////////
// KRIPKE
class spins_kripke final: public kripke
{
public:
spins_kripke(spins_interface_ptr d, const bdd_dict_ptr& dict,
const spot::prop_set* ps, formula dead,
int compress)
: kripke(dict),
d_(d),
state_size_(d_->get_state_size()),
ps_(ps),
compress_(compress == 0 ? nullptr
: compress == 1 ? int_array_array_compress
: int_array_array_compress2),
decompress_(compress == 0 ? nullptr
: compress == 1 ? int_array_array_decompress
: int_array_array_decompress2),
uncompressed_(compress ? new int[state_size_ + 30] : nullptr),
compressed_(compress ? new int[state_size_ * 2] : nullptr),
statepool_(compress ?
(sizeof(spins_compressed_state)
- sizeof(spins_compressed_state::vars)) :
(sizeof(spins_state) - sizeof(spins_state::vars)
+ (state_size_ * sizeof(int)))),
state_condition_last_state_(nullptr),
state_condition_last_cc_(nullptr)
{
vname_ = new const char*[state_size_];
format_filter_ = new bool[state_size_];
for (int i = 0; i < state_size_; ++i)
{
vname_[i] = d_->get_state_variable_name(i);
// We don't want to print variables that can take a single
// value (e.g. process with a single state) to shorten the
// output.
int type = d->get_state_variable_type(i);
format_filter_[i] =
(d->get_type_value_count(type) != 1);
}
// Register the "dead" proposition. There are three cases to
// consider:
// * If DEAD is "false", it means we are not interested in finite
// sequences of the system.
// * If DEAD is "true", we want to check finite sequences as well
// as infinite sequences, but do not need to distinguish them.
// * If DEAD is any other string, this is the name a property
// that should be true when looping on a dead state, and false
// otherwise.
// We handle these three cases by setting ALIVE_PROP and DEAD_PROP
// appropriately. ALIVE_PROP is the bdd that should be ANDed
// to all transitions leaving a live state, while DEAD_PROP should
// be ANDed to all transitions leaving a dead state.
if (dead.is_ff())
{
alive_prop = bddtrue;
dead_prop = bddfalse;
}
else if (dead.is_tt())
{
alive_prop = bddtrue;
dead_prop = bddtrue;
}
else
{
int var = dict->register_proposition(dead, d_);
dead_prop = bdd_ithvar(var);
alive_prop = bdd_nithvar(var);
}
}
~spins_kripke()
{
if (iter_cache_)
{
delete iter_cache_;
iter_cache_ = nullptr;
}
delete[] format_filter_;
delete[] vname_;
if (compress_)
{
delete[] uncompressed_;
delete[] compressed_;
}
dict_->unregister_all_my_variables(d_.get());
delete ps_;
if (state_condition_last_state_)
state_condition_last_state_->destroy();
delete state_condition_last_cc_; // Might be 0 already.
}
virtual state* get_init_state() const override
{
if (compress_)
{
d_->get_initial_state(uncompressed_);
size_t csize = state_size_ * 2;
compress_(uncompressed_, state_size_, compressed_, csize);
multiple_size_pool* p =
const_cast(&compstatepool_);
void* mem = p->allocate(sizeof(spins_compressed_state)
- sizeof(spins_compressed_state::vars)
+ sizeof(int) * csize);
spins_compressed_state* res = new(mem)
spins_compressed_state(csize, p);
memcpy(res->vars, compressed_, csize * sizeof(int));
res->compute_hash();
return res;
}
else
{
fixed_size_pool* p = const_cast(&statepool_);
spins_state* res = new(p->allocate()) spins_state(state_size_, p);
d_->get_initial_state(res->vars);
res->compute_hash();
return res;
}
}
bdd
compute_state_condition_aux(const int* vars) const
{
bdd res = bddtrue;
for (auto& i: *ps_)
{
int l = vars[i.var_num];
int r = i.val;
bool cond = false;
switch (i.op)
{
case OP_EQ:
cond = (l == r);
break;
case OP_NE:
cond = (l != r);
break;
case OP_LT:
cond = (l < r);
break;
case OP_GT:
cond = (l > r);
break;
case OP_LE:
cond = (l <= r);
break;
case OP_GE:
cond = (l >= r);
break;
}
if (cond)
res &= bdd_ithvar(i.bddvar);
else
res &= bdd_nithvar(i.bddvar);
}
return res;
}
callback_context* build_cc(const int* vars, int& t) const
{
callback_context* cc = new callback_context;
cc->state_size = state_size_;
cc->pool =
const_cast(compress_
? static_cast(&compstatepool_)
: static_cast(&statepool_));
cc->compress = compress_;
cc->compressed = compressed_;
t = d_->get_successors(nullptr, const_cast(vars),
compress_
? transition_callback_compress
: transition_callback,
cc);
assert((unsigned)t == cc->transitions.size());
return cc;
}
bdd
compute_state_condition(const state* st) const
{
// If we just computed it, don't do it twice.
if (st == state_condition_last_state_)
return state_condition_last_cond_;
if (state_condition_last_state_)
{
state_condition_last_state_->destroy();
delete state_condition_last_cc_; // Might be 0 already.
state_condition_last_cc_ = nullptr;
}
const int* vars = get_vars(st);
bdd res = compute_state_condition_aux(vars);
int t;
callback_context* cc = build_cc(vars, t);
if (t)
{
res &= alive_prop;
}
else
{
res &= dead_prop;
// Add a self-loop to dead-states if we care about these.
if (res != bddfalse)
cc->transitions.emplace_back(st->clone());
}
state_condition_last_cc_ = cc;
state_condition_last_cond_ = res;
state_condition_last_state_ = st->clone();
return res;
}
const int*
get_vars(const state* st) const
{
const int* vars;
if (compress_)
{
const spins_compressed_state* s =
down_cast(st);
decompress_(s->vars, s->size, uncompressed_, state_size_);
vars = uncompressed_;
}
else
{
const spins_state* s = down_cast(st);
vars = s->vars;
}
return vars;
}
virtual
spins_succ_iterator* succ_iter(const state* st) const override
{
// This may also compute successors in state_condition_last_cc
bdd scond = compute_state_condition(st);
callback_context* cc;
if (state_condition_last_cc_)
{
cc = state_condition_last_cc_;
state_condition_last_cc_ = nullptr; // Now owned by the iterator.
}
else
{
int t;
cc = build_cc(get_vars(st), t);
// Add a self-loop to dead-states if we care about these.
if (t == 0 && scond != bddfalse)
cc->transitions.emplace_back(st->clone());
}
if (iter_cache_)
{
spins_succ_iterator* it =
down_cast(iter_cache_);
it->recycle(cc, scond);
iter_cache_ = nullptr;
return it;
}
return new spins_succ_iterator(cc, scond);
}
virtual
bdd state_condition(const state* st) const override
{
return compute_state_condition(st);
}
virtual
std::string format_state(const state *st) const override
{
const int* vars = get_vars(st);
std::stringstream res;
if (state_size_ == 0)
return "empty state";
int i = 0;
for (;;)
{
if (!format_filter_[i])
{
++i;
if (i == state_size_)
break;
continue;
}
res << vname_[i] << '=' << vars[i];
++i;
if (i == state_size_)
break;
res << ", ";
}
return res.str();
}
private:
spins_interface_ptr d_;
int state_size_;
const char** vname_;
bool* format_filter_;
const spot::prop_set* ps_;
bdd alive_prop;
bdd dead_prop;
void (*compress_)(const int*, size_t, int*, size_t&);
void (*decompress_)(const int*, size_t, int*, size_t);
int* uncompressed_;
int* compressed_;
fixed_size_pool statepool_;
multiple_size_pool compstatepool_;
// This cache is used to speedup repeated calls to state_condition()
// and get_succ().
// If state_condition_last_state_ != 0, then state_condition_last_cond_
// contain its (recently computed) condition. If additionally
// state_condition_last_cc_ != 0, then it contains the successors.
mutable const state* state_condition_last_state_;
mutable bdd state_condition_last_cond_;
mutable callback_context* state_condition_last_cc_;
};
//////////////////////////////////////////////////////////////////////////
// LOADER
// Call spins to compile "foo.prom" as "foo.prom.spins" if the latter
// does not exist already or is older.
static void
compile_model(std::string& filename, const std::string& ext)
{
std::string command;
std::string compiled_ext;
if (ext == ".gal")
{
command = "gal2c " + filename;
compiled_ext = "2C";
}
else if (ext == ".prom" || ext == ".pm" || ext == ".pml")
{
command = "spins " + filename;
compiled_ext = ".spins";
}
else if (ext == ".dve")
{
command = "divine compile --ltsmin " + filename;
command += " 2> /dev/null"; // FIXME needed for Clang on MacOSX
compiled_ext = "2C";
}
else
{
throw std::runtime_error(std::string("Unknown extension '")
+ ext + "'. Use '.prom', '.pm', '.pml', "
"'.dve', '.dve2C', '.gal', '.gal2C' or "
"'.prom.spins'.");
}
struct stat s;
if (stat(filename.c_str(), &s) != 0)
throw std::runtime_error(std::string("Cannot open ") + filename);
filename += compiled_ext;
// Remove any directory, because the new file will
// be compiled in the current directory.
size_t pos = filename.find_last_of("/\\");
if (pos != std::string::npos)
filename = "./" + filename.substr(pos + 1);
struct stat d;
if (stat(filename.c_str(), &d) == 0)
if (s.st_mtime < d.st_mtime)
// The .spins or .dve2C or .gal2C is up-to-date, no need to compile.
return;
int res = system(command.c_str());
if (res)
throw std::runtime_error(std::string("Execution of '")
+ command.c_str() + "' returned exit code "
+ std::to_string(WEXITSTATUS(res)));
}
}
ltsmin_model
ltsmin_model::load(const std::string& file_arg)
{
std::string file;
if (file_arg.find_first_of("/\\") != std::string::npos)
file = file_arg;
else
file = "./" + file_arg;
std::string ext = file.substr(file.find_last_of("."));
if (ext != ".spins" && ext != ".dve2C" && ext != ".gal2C")
{
compile_model(file, ext);
ext = file.substr(file.find_last_of("."));
}
if (lt_dlinit())
throw std::runtime_error("Failed to initialize libltldl.");
lt_dlhandle h = lt_dlopen(file.c_str());
if (!h)
{
std::string lt_error = lt_dlerror();
lt_dlexit();
throw std::runtime_error(std::string("Failed to load '")
+ file + "'.\n" + lt_error);
}
auto d = std::make_shared();
assert(d); // Superfluous, but Debian's GCC 7 snapshot 20161207-1 warns
// about potential null pointer dereference on the next line.
d->handle = h;
auto sym = [&](auto* dst, const char* name)
{
// Work around -Wpendantic complaining that pointer-to-objects
// should not be converted to pointer-to-functions (we have to
// assume they can for POSIX).
*reinterpret_cast(dst) = lt_dlsym(h, name);
if (dst == nullptr)
throw std::runtime_error(std::string("Failed to resolve symbol '")
+ name + "' in '" + file + "'.");
};
// SpinS interface.
if (ext == ".spins")
{
sym(&d->get_initial_state, "spins_get_initial_state");
d->have_property = nullptr;
sym(&d->get_successors, "spins_get_successor_all");
sym(&d->get_state_size, "spins_get_state_size");
sym(&d->get_state_variable_name, "spins_get_state_variable_name");
sym(&d->get_state_variable_type, "spins_get_state_variable_type");
sym(&d->get_type_count, "spins_get_type_count");
sym(&d->get_type_name, "spins_get_type_name");
sym(&d->get_type_value_count, "spins_get_type_value_count");
sym(&d->get_type_value_name, "spins_get_type_value_name");
}
// dve2 and gal2C interfaces.
else
{
sym(&d->get_initial_state, "get_initial_state");
*reinterpret_cast(&d->have_property) =
lt_dlsym(h, "have_property");
sym(&d->get_successors, "get_successors");
sym(&d->get_state_size, "get_state_variable_count");
sym(&d->get_state_variable_name, "get_state_variable_name");
sym(&d->get_state_variable_type, "get_state_variable_type");
sym(&d->get_type_count, "get_state_variable_type_count");
sym(&d->get_type_name, "get_state_variable_type_name");
sym(&d->get_type_value_count, "get_state_variable_type_value_count");
sym(&d->get_type_value_name, "get_state_variable_type_value");
}
if (d->have_property && d->have_property())
throw std::runtime_error("Models with embedded properties "
"are not supported.");
return { d };
}
////////////////////////////////////////////////////////////////////////
// CSpins comparison functions & definitions
struct cspins_state_equal
{
bool
operator()(const cspins_state lhs,
const cspins_state rhs) const
{
return 0 == memcmp(lhs, rhs, (2+rhs[1])* sizeof(int));
}
};
struct cspins_state_hash
{
size_t
operator()(const cspins_state that) const
{
return that[0];
}
};
struct both
{
cspins_state first;
int second;
};
struct cspins_state_hasher
{
cspins_state_hasher(cspins_state&)
{ }
cspins_state_hasher() = default;
brick::hash::hash128_t
hash(cspins_state t) const
{
// FIXME we should compute a better hash value for this particular
// case. Shall we use two differents hash functions?
return std::make_pair(t[0], t[0]);
}
bool equal(cspins_state lhs, cspins_state rhs) const
{
return 0 == memcmp(lhs, rhs, (2+rhs[1])* sizeof(int));
}
};
//brick::hashset::FastConcurrent ht2;
typedef brick::hashset::FastConcurrent cspins_state_map;
////////////////////////////////////////////////////////////////////////
// A manager for Cspins states.
class cspins_state_manager final
{
public:
cspins_state_manager(unsigned int state_size,
int compress)
: p_((state_size+2)*sizeof(int)), compress_(compress),
/* reserve one integer for the hash value and size */
state_size_(state_size),
fn_compress_(compress == 0 ? nullptr
: compress == 1 ? int_array_array_compress
: int_array_array_compress2),
fn_decompress_(compress == 0 ? nullptr
: compress == 1 ? int_array_array_decompress
: int_array_array_decompress2)
{ }
int* unbox_state(cspins_state s) const
{
return s+2;
}
// cmp is the area we can use to compute the compressed rep of dst.
cspins_state alloc_setup(int *dst, int* cmp, size_t cmpsize)
{
cspins_state out = nullptr;
size_t size = state_size_;
int* ref = dst;
if (compress_)
{
size_t csize = cmpsize;
fn_compress_(dst, state_size_, cmp, csize);
ref = cmp;
size = csize;
out = (cspins_state) msp_.allocate((size+2)*sizeof(int));
}
else
out = (cspins_state) p_.allocate();
int hash_value = 0;
memcpy(unbox_state(out), ref, size * sizeof(int));
for (unsigned int i = 0; i < state_size_; ++i)
hash_value = wang32_hash(hash_value ^ dst[i]);
out[0] = hash_value;
out[1] = size;
return out;
}
void decompress(cspins_state s, int* uncompressed, unsigned size) const
{
fn_decompress_(s+2, s[1], uncompressed, size);
}
void dealloc(cspins_state s)
{
if (compress_)
msp_.deallocate(s, (s[1]+2)*sizeof(int));
else
p_.deallocate(s);
}
unsigned int size() const
{
return state_size_;
}
private:
fixed_size_pool p_;
multiple_size_pool msp_;
bool compress_;
const unsigned int state_size_;
void (*fn_compress_)(const int*, size_t, int*, size_t&);
void (*fn_decompress_)(const int*, size_t, int*, size_t);
};
////////////////////////////////////////////////////////////////////////
// Iterator over Cspins states
// This structure is used as a parameter during callback when
// generating states from the shared librarie produced by LTSmin
struct inner_callback_parameters
{
cspins_state_manager* manager; // The state manager
std::vector* succ; // The successors of a state
cspins_state_map* map;
int* compressed_;
int* uncompressed_;
int default_value_;
bool compress;
bool selfloopize;
};
// This class provides an iterator over the successors of a state.
// All successors are computed once when an iterator is recycled or
// created.
class cspins_iterator final
{
public:
cspins_iterator(cspins_state s,
const spot::spins_interface* d,
cspins_state_manager& manager,
cspins_state_map& map,
inner_callback_parameters& inner,
int defvalue,
cube cond,
bool compress,
bool selfloopize,
cubeset& cubeset, int dead_idx)
: current_(0), cond_(cond)
{
successors_.reserve(10);
inner.manager = &manager;
inner.map = ↦
inner.succ = &successors_;
inner.default_value_ = defvalue;
inner.compress = compress;
inner.selfloopize = selfloopize;
int* ref = s;
if (compress)
// already filled by compute_condition
ref = inner.uncompressed_;
int n = d->get_successors
(nullptr, manager.unbox_state(ref),
[](void* arg, transition_info_t*, int *dst){
inner_callback_parameters* inner =
static_cast(arg);
cspins_state s =
inner->manager->alloc_setup(dst, inner->compressed_,
inner->manager->size() * 2);
auto it = inner->map->insert({s});
inner->succ->push_back(*it);
if (!it.isnew())
inner->manager->dealloc(s);
},
&inner);
if (!n && selfloopize)
{
successors_.push_back(s);
if (dead_idx != -1)
cubeset.set_true_var(cond, dead_idx);
}
}
void recycle(cspins_state s,
const spot::spins_interface* d,
cspins_state_manager& manager,
cspins_state_map& map,
inner_callback_parameters& inner,
int defvalue,
cube cond,
bool compress,
bool selfloopize,
cubeset& cubeset, int dead_idx)
{
cond_ = cond;
current_ = 0;
// Constant time since int* is is_trivially_destructible
successors_.clear();
inner.manager = &manager;
inner.succ = &successors_;
inner.map = ↦
inner.default_value_ = defvalue;
inner.compress = compress;
inner.selfloopize = selfloopize;
int* ref = s;
if (compress)
// Already filled by compute_condition
ref = inner.uncompressed_;
int n = d->get_successors
(nullptr, manager.unbox_state(ref),
[](void* arg, transition_info_t*, int *dst){
inner_callback_parameters* inner =
static_cast(arg);
cspins_state s =
inner->manager->alloc_setup(dst, inner->compressed_,
inner->manager->size() * 2);
auto it = inner->map->insert({s});
inner->succ->push_back(*it);
if (!it.isnew())
inner->manager->dealloc(s);
},
&inner);
if (!n && selfloopize)
{
successors_.push_back(s);
if (dead_idx != -1)
cubeset.set_true_var(cond, dead_idx);
}
}
~cspins_iterator()
{
// Do not release successors states, the manager
// will do it on time.
}
void next()
{
++current_;
}
bool done() const
{
return current_ >= successors_.size();
}
cspins_state state() const
{
return successors_[current_];
}
cube condition() const
{
return cond_;
}
private:
std::vector successors_;
unsigned int current_;
cube cond_;
};
////////////////////////////////////////////////////////////////////////
// Concrete definition of the system
// A specialisation of the template class kripke
template<>
class kripkecube final
{
typedef enum {
OP_EQ_VAR, OP_NE_VAR, OP_LT_VAR, OP_GT_VAR, OP_LE_VAR, OP_GE_VAR,
VAR_OP_EQ, VAR_OP_NE, VAR_OP_LT, VAR_OP_GT, VAR_OP_LE, VAR_OP_GE,
VAR_OP_EQ_VAR, VAR_OP_NE_VAR, VAR_OP_LT_VAR,
VAR_OP_GT_VAR, VAR_OP_LE_VAR, VAR_OP_GE_VAR, VAR_DEAD
} relop;
// Structure for complex atomic proposition
struct one_prop
{
int lval;
relop op;
int rval;
};
// Data structure to store complex atomic propositions
typedef std::vector prop_set;
prop_set pset_;
public:
kripkecube(spins_interface_ptr sip, bool compress,
std::vector visible_aps,
bool selfloopize, std::string dead_prop)
: sip_(sip), d_(sip.get()), manager_(d_->get_state_size(), compress),
compress_(compress), cubeset_(visible_aps.size()),
selfloopize_(selfloopize), aps_(visible_aps)
{
map_.setSize(2000000);
recycle_.reserve(2000000);
inner_.compressed_ = new int[d_->get_state_size() * 2];
inner_.uncompressed_ = new int[d_->get_state_size()+30];
dead_idx_ = -1;
match_aps(visible_aps, dead_prop);
}
~kripkecube()
{
for (auto i: recycle_)
{
cubeset_.release(i->condition());
delete i;
}
delete inner_.compressed_;
delete inner_.uncompressed_;
}
cspins_state initial()
{
d_->get_initial_state(inner_.uncompressed_);
return manager_.alloc_setup(inner_.uncompressed_, inner_.compressed_,
manager_.size() * 2);
}
std::string to_string(const cspins_state s) const
{
std::string res = "";
cspins_state out = manager_.unbox_state(s);
cspins_state ref = out;
if (compress_)
{
manager_.decompress(s, inner_.uncompressed_, manager_.size());
ref = inner_.uncompressed_;
}
for (int i = 0; i < d_->get_state_size(); ++i)
res += (d_->get_state_variable_name(i)) +
("=" + std::to_string(ref[i])) + ",";
res.pop_back();
return res;
}
cspins_iterator* succ(const cspins_state s)
{
if (SPOT_LIKELY(!recycle_.empty()))
{
auto tmp = recycle_.back();
recycle_.pop_back();
compute_condition(tmp->condition(), s);
tmp->recycle(s, d_, manager_, map_, inner_, -1,
tmp->condition(), compress_, selfloopize_,
cubeset_, dead_idx_);
return tmp;
}
cube cond = cubeset_.alloc();
compute_condition(cond, s);
return new cspins_iterator(s, d_, manager_, map_, inner_,
-1, cond, compress_, selfloopize_,
cubeset_, dead_idx_);
}
void recycle(cspins_iterator* it)
{
recycle_.push_back(it);
}
const std::vector get_ap()
{
return aps_;
}
private:
// The two followings functions are too big to be inlined in
// this class. See below for more details
/// Parse the set of atomic proposition to have a more
/// efficient data strucure for computation
void match_aps(std::vector& aps, std::string dead_prop);
/// Compute the cube associated to each state. The cube
/// will then be given to all iterators.
void compute_condition(cube c, cspins_state s);
spins_interface_ptr sip_;
const spot::spins_interface* d_; // To avoid numerous sip_.get()
cspins_state_manager manager_; // FIXME One per thread!
bool compress_;
std::vector recycle_;
inner_callback_parameters inner_; // FIXME Should be an array for threads.
cubeset cubeset_;
bool selfloopize_;
int dead_idx_;
std::vector aps_;
cspins_state_map map_;
};
void
kripkecube::compute_condition(cube c, cspins_state s)
{
int i = -1;
int *vars = manager_.unbox_state(s);
// State is compressed, uncompress it
if (compress_)
{
manager_.decompress(s, inner_.uncompressed_+2, manager_.size());
vars = inner_.uncompressed_ + 2;
}
for (auto& ap: pset_)
{
++i;
bool cond = false;
switch (ap.op)
{
case OP_EQ_VAR:
cond = (ap.lval == vars[ap.rval]);
break;
case OP_NE_VAR:
cond = (ap.lval != vars[ap.rval]);
break;
case OP_LT_VAR:
cond = (ap.lval < vars[ap.rval]);
break;
case OP_GT_VAR:
cond = (ap.lval > vars[ap.rval]);
break;
case OP_LE_VAR:
cond = (ap.lval <= vars[ap.rval]);
break;
case OP_GE_VAR:
cond = (ap.lval >= vars[ap.rval]);
break;
case VAR_OP_EQ:
cond = (vars[ap.lval] == ap.rval);
break;
case VAR_OP_NE:
cond = (vars[ap.lval] != ap.rval);
break;
case VAR_OP_LT:
cond = (vars[ap.lval] < ap.rval);
break;
case VAR_OP_GT:
cond = (vars[ap.lval] > ap.rval);
break;
case VAR_OP_LE:
cond = (vars[ap.lval] <= ap.rval);
break;
case VAR_OP_GE:
cond = (vars[ap.lval] >= ap.rval);
break;
case VAR_OP_EQ_VAR:
cond = (vars[ap.lval] == vars[ap.rval]);
break;
case VAR_OP_NE_VAR:
cond = (vars[ap.lval] != vars[ap.rval]);
break;
case VAR_OP_LT_VAR:
cond = (vars[ap.lval] < vars[ap.rval]);
break;
case VAR_OP_GT_VAR:
cond = (vars[ap.lval] > vars[ap.rval]);
break;
case VAR_OP_LE_VAR:
cond = (vars[ap.lval] <= vars[ap.rval]);
break;
case VAR_OP_GE_VAR:
cond = (vars[ap.lval] >= vars[ap.rval]);
break;
case VAR_DEAD:
break;
default:
assert(false);
}
if (cond)
cubeset_.set_true_var(c, i);
else
cubeset_.set_false_var(c, i);
}
}
// FIXME I think we only need visbles aps, i.e. if the system has
// following variables, i.e. P_0.var1 and P_0.var2 but the property
// automaton only mention P_0.var2, we do not need to capture (in
// the resulting cube) any atomic proposition for P_0.var1
void
kripkecube::match_aps(std::vector& aps,
std::string dead_prop)
{
// Keep trace of errors
int errors = 0;
std::ostringstream err;
// First we capture state name of each processes.
int type_count = d_->get_type_count();
typedef std::map enum_map_t;
std::vector enum_map(type_count);
std::unordered_map matcher;
for (int i = 0; i < type_count; ++i)
{
matcher[d_->get_type_name(i)] = i;
int enum_count = d_->get_type_value_count(i);
for (int j = 0; j < enum_count; ++j)
enum_map[i].emplace(d_->get_type_value_name(i, j), j);
}
// Then we extract the basic atomics propositions from the Kripke
std::vector k_aps;
int state_size = d_->get_state_size();
for (int i = 0; i < state_size; ++i)
k_aps.push_back(d_->get_state_variable_name(i));
int i = -1;
for (auto ap: aps)
{
++i;
// Grab dead property
if (ap.compare(dead_prop) == 0)
{
dead_idx_ = i;
pset_.push_back({i , VAR_DEAD, 0});
continue;
}
// Get ap name and remove all extra whitespace
ap.erase(std::remove_if(ap.begin(), ap.end(),
[](char x){
return std::isspace(x);
}),
ap.end());
// Look if it is a well known atomic proposition
auto it = std::find(k_aps.begin(), k_aps.end(), ap);
if (it != k_aps.end())
{
// The aps is directly an AP of the system, we will just
// have to detect if the variable is 0 or not.
pset_.push_back({(int)std::distance(k_aps.begin(), it),
VAR_OP_NE, 0});
continue;
}
// The ap is not known. We distinguish many cases:
// - It is a State name, i.e P_0.S or P_0 == S
// - It refers a specific variable value, i.e. P_0.var == 2,
// P_0.var < 2, P_0.var != 2, ...
// - It's an unknown variable
// Note that we do not support P_0.state1 == 12 since we do not
// know how to interpret such atomic proposition.
// We split the formula according to operators
std::size_t found_op_first = ap.find_first_of("=<>!");
std::size_t found_op_last = ap.find_last_of("=<>!");
std::string left;
std::string right;
std::string ap_error;
std::string op;
if (found_op_first == 0 || found_op_last == ap.size()-1)
{
err << "Invalid operator use in " << ap << '\n';
++errors;
continue;
}
if (std::string::npos == found_op_first)
{
left = ap;
right = "";
op = "";
}
else
{
left = ap.substr(0, found_op_first);
right = ap.substr(found_op_last+1, ap.size()-found_op_last);
op = ap.substr(found_op_first, found_op_last+1-found_op_first);
}
// Variables to store the left part of the atomic proposition
bool left_is_digit = false;
int lval;
// Variables to store the right part of the atomic proposition
bool right_is_digit = false;
int rval;
// And finally the operator
relop oper;
// Now, left and (possibly) right are should refer atomic
// propositions or specific state inside of a process.
// First check if it is a known atomic proposition
it = std::find(k_aps.begin(), k_aps.end(), left);
if (it != k_aps.end())
{
// The aps is directly an AP of the system, we will just
// have to detect if the variable is 0 or not.
lval = std::distance(k_aps.begin(), it);
}
else
{
// Detect if it is a process state
std::size_t found_dot = left.find_first_of('.');
if (std::string::npos != found_dot)
{
std::string proc_name = left.substr(0, found_dot);
std::string st_name = left.substr(found_dot+1,
left.size()-found_dot);
auto ni = matcher.find(proc_name);
if (ni == matcher.end())
{
ap_error = left;
goto error_ap_unknown;
}
int type_num = ni->second;
enum_map_t::const_iterator ei =
enum_map[type_num].find(st_name);
if (ei == enum_map[type_num].end())
{
ap_error = left;
goto error_ap_unknown;
}
if (right.compare("") != 0)
{
// We are in the case P.state1 == something.. We don't
// know how to interpret this.
ap_error = op + right;
err << "\nOperation " << op << " in \"" << ap_error
<< "\" is not available for process's state"
<< " (i.e. " << left << ")\n";
++errors;
continue;
}
pset_.push_back({
(int) std::distance(k_aps.begin(),
std::find(k_aps.begin(),
k_aps.end(), proc_name)),
VAR_OP_EQ, ei->second});
continue;
}
else
{
// Finally, it's a number...
left_is_digit = true;
for (auto c: left)
if (!isdigit(c))
left_is_digit = false;
if (left_is_digit)
lval = std::strtol (left.c_str(), nullptr, 10);
else
{
// ... or something like: State1 == P_0
// so it doesn't contains '.'
if (std::string::npos != right.find_first_of('.'))
{
err << "\nOperation \"" << right
<< "\" does not refer a process"
<< " (i.e. " << left << " is not valid)\n";
++errors;
continue;
}
// or something like: P_0 == State1
auto ni = matcher.find(right);
if (ni == matcher.end())
{
ap_error = ap;
goto error_ap_unknown;
}
int type_num = ni->second;
enum_map_t::const_iterator ei =
enum_map[type_num].find(left);
if (ei == enum_map[type_num].end())
{
ap_error = left;
goto error_ap_unknown;
}
pset_.push_back({
(int) std::distance(k_aps.begin(),
std::find(k_aps.begin(),
k_aps.end(), right)),
VAR_OP_EQ, ei->second});
continue;
}
}
}
// Here Left is known. Just detect cases where left is digit there is
// no right part.
if (left_is_digit && right.empty())
{
ap_error = ap;
goto error_ap_unknown;
}
assert(!right.empty() && !op.empty());
// Parse right part of the atomic proposition
// Check if it is a known atomic proposition
it = std::find(k_aps.begin(), k_aps.end(), right);
if (it != k_aps.end())
{
// The aps is directly an AP of the system, we will just
// have to detect if the variable is 0 or not.
rval = std::distance(k_aps.begin(), it);
}
else
{
// We are is the right part, so if it is a process state
// we do not know how to interpret (xxx == P.state1). Abort
std::size_t found_dot = right.find_first_of('.');
if (std::string::npos != found_dot)
{
ap_error = left + op;
err << "\nOperation " << op << " in \"" << ap_error
<< "\" is not available for process's state"
<< " (i.e. " << right << ")\n";
++errors;
continue;
}
else
{
// Finally, it's a number
right_is_digit = true;
for (auto c: right)
if (!isdigit(c))
right_is_digit = false;
if (right_is_digit)
rval = std::strtol (right.c_str(), nullptr, 10);
else
{
if (std::string::npos != left.find_first_of('.'))
{
err << "\nProposition \"" << ap
<< "\" cannot be interpreted"
<< " (i.e. " << op + right << " is not valid)\n";
++errors;
continue;
}
// or something like: P_0 == State1
auto ni = matcher.find(left);
if (ni == matcher.end())
{
ap_error = left;
goto error_ap_unknown;
}
int type_num = ni->second;
enum_map_t::const_iterator ei =
enum_map[type_num].find(right);
if (ei == enum_map[type_num].end())
{
ap_error = right;
goto error_ap_unknown;
}
pset_.push_back({
(int) std::distance(k_aps.begin(),
std::find(k_aps.begin(),
k_aps.end(), left)),
VAR_OP_EQ, ei->second});
continue;
}
}
}
if (left_is_digit && right_is_digit)
{
err << "\nOperation \"" << op
<< "\" between two numbers not available"
<< " (i.e. " << right << " and, "
<< left << ")\n";
++errors;
continue;
}
// Left and Right are know, just analyse the operator.
if (op.compare("==") == 0)
oper = !left_is_digit && !right_is_digit? VAR_OP_EQ_VAR :
(left_is_digit? OP_EQ_VAR : VAR_OP_EQ);
else if (op.compare("!=") == 0)
oper = !left_is_digit && !right_is_digit? VAR_OP_NE_VAR :
(left_is_digit? OP_NE_VAR : VAR_OP_NE);
else if (op.compare("<") == 0)
oper = !left_is_digit && !right_is_digit? VAR_OP_LT_VAR :
(left_is_digit? OP_LT_VAR : VAR_OP_LT);
else if (op.compare(">") == 0)
oper = !left_is_digit && !right_is_digit? VAR_OP_GT_VAR :
(left_is_digit? OP_GT_VAR : VAR_OP_GT);
else if (op.compare("<=") == 0)
oper = !left_is_digit && !right_is_digit? VAR_OP_LE_VAR :
(left_is_digit? OP_LE_VAR : VAR_OP_LE);
else if (op.compare(">=") == 0)
oper = !left_is_digit && !right_is_digit? VAR_OP_GE_VAR :
(left_is_digit? OP_GE_VAR : VAR_OP_GE);
else
{
err << "\nOperation \"" << op
<< "\" is unknown\n";
++errors;
continue;
}
pset_.push_back({lval, oper, rval});
continue;
error_ap_unknown:
err << "\nProposition \"" << ap_error << "\" does not exist\n";
++errors;
continue;
}
if (errors)
throw std::runtime_error(err.str());
}
spot::kripkecube*
ltsmin_model::kripkecube(const atomic_prop_set* to_observe,
const formula dead, int compress) const
{
// Register the "dead" proposition. There are three cases to
// consider:
// * If DEAD is "false", it means we are not interested in finite
// sequences of the system.
// * If DEAD is "true", we want to check finite sequences as well
// as infinite sequences, but do not need to distinguish them.
// * If DEAD is any other string, this is the name a property
// that should be true when looping on a dead state, and false
// otherwise.
std::string dead_ap = "";
bool selfloopize = true;
if (dead == spot::formula::ff())
selfloopize = false;
else if (dead != spot::formula::tt())
dead_ap = dead.ap_name();
// Build the set of observed propositons, i.e. those in the
// formula
std::vector observed;
bool add_dead = true;
for (auto it: *to_observe)
{
observed.push_back(it.ap_name());
// Dead proposition is already in observed prop
if (it.ap_name().compare(dead_ap))
add_dead = false;
}
if (dead_ap.compare("") != 0 && add_dead)
observed.push_back(dead_ap);
// Finally build the system.
return new spot::kripkecube
(iface, compress, observed, selfloopize, dead_ap);
}
kripke_ptr
ltsmin_model::kripke(const atomic_prop_set* to_observe,
bdd_dict_ptr dict,
const formula dead, int compress) const
{
spot::prop_set* ps = new spot::prop_set;
try
{
convert_aps(to_observe, iface, dict, dead, *ps);
}
catch (const std::runtime_error&)
{
delete ps;
dict->unregister_all_my_variables(iface.get());
throw;
}
auto res = std::make_shared(iface, dict, ps, dead, compress);
// All atomic propositions have been registered to the bdd_dict
// for iface, but we also need to add them to the automaton so
// twa::ap() works.
for (auto ap: *to_observe)
res->register_ap(ap);
if (dead.is(op::ap))
res->register_ap(dead);
return res;
}
ltsmin_model::~ltsmin_model()
{
}
int ltsmin_model::state_size() const
{
return iface->get_state_size();
}
const char* ltsmin_model::state_variable_name(int var) const
{
return iface->get_state_variable_name(var);
}
int ltsmin_model::state_variable_type(int var) const
{
return iface->get_state_variable_type(var);
}
int ltsmin_model::type_count() const
{
return iface->get_type_count();
}
const char* ltsmin_model::type_name(int type) const
{
return iface->get_type_name(type);
}
int ltsmin_model::type_value_count(int type)
{
return iface->get_type_value_count(type);
}
const char* ltsmin_model::type_value_name(int type, int val)
{
return iface->get_type_value_name(type, val);
}
}