// -*- coding: utf-8 -*- // Copyright (C) 2012, 2013 Laboratoire de Recherche et Développement // de l'Epita (LRDE). // // This file is part of Spot, a model checking library. // // Spot is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // // Spot is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . #include #include #include #include #include #include "tgba/tgbaexplicit.hh" #include "simulation.hh" #include "misc/acccompl.hh" #include "misc/minato.hh" #include "misc/unique_ptr.hh" #include "tgba/bddprint.hh" #include "tgbaalgos/reachiter.hh" #include "tgbaalgos/sccfilter.hh" #include "tgbaalgos/scc.hh" #include "tgbaalgos/dupexp.hh" #include "tgbaalgos/dotty.hh" // The way we developed this algorithm is the following: We take an // automaton, and reverse all these acceptance conditions. We reverse // them to go make the meaning of the signature easier. We are using // bdd, and we want to let it make all the simplification. Because of // the format of the acceptance condition, it doesn't allow easy // simplification. Instead of encoding them as: "a!b!c + !ab!c", we // use them as: "ab". We complement them because we want a // simplification if the condition of the transition A implies the // transition of B, and if the acceptance condition of A is included // in the acceptance condition of B. To let the bdd makes the job, we // revert them. // Then, to check if a transition i-dominates another, we'll use the bdd: // "sig(transA) = cond(trans) & acc(trans) & implied(class(trans->state))" // Idem for sig(transB). The 'implied' // (represented by a hash table 'relation_' in the implementation) is // a conjunction of all the class dominated by the class of the // destination. This is how the relation is included in the // signature. It makes the simplifications alone, and the work is // done. The algorithm is cut into several step: // // 1. Run through the tgba and switch the acceptance condition to their // negation, and initializing relation_ by the 'init_ -> init_' where // init_ is the bdd which represents the class. This function is the // constructor of Simulation. // 2. Enter in the loop (run). // - Rename the class. // - run through the automaton and computing the signature of each // state. This function is `update_sig'. // - Enter in a double loop to adapt the partial order, and set // 'relation_' accordingly. This function is `update_po'. // 3. Rename the class (to actualize the name in the previous_class and // in relation_). // 4. Building an automaton with the result, with the condition: // "a transition in the original automaton appears in the simulated one // iff this transition is included in the set of i-maximal neighbour." // This function is `build_output'. // The automaton simulated is recomplemented to come back to its initial // state when the object Simulation is destroyed. // // Obviously these functions are possibly cut into several little one. // This is just the general development idea. // How to use isop: // I need all variable non_acceptance & non_class. // bdd_support(sig(X)): All var // bdd_support(sig(X)) - allacc - allclassvar // We have had the Cosimulation by changing the acc_compl_automaton by // adding a template parameter. If this parameter is set to true, we // record the transition in the opposite direction (we just swap // sources and destination). In the build result we are making the // same thing to rebuild the automaton. // In the signature, // TODO LIST: Play on the order of the selection in the // dont_care_simulation. The good place to work is in add_to_map_imply. namespace spot { namespace { // Some useful typedef: // Used to get the signature of the state. typedef Sgi::hash_map map_state_bdd; typedef Sgi::hash_map map_state_unsigned; typedef std::map map_state_state; // Get the list of state for each class. typedef std::map, bdd_less_than> map_bdd_lstate; typedef std::map map_bdd_state; // Our constraint: (state_src, state_dst) = to_add. // We define the couple of state as the key of the constraint. typedef std::pair constraint_key; // But we need a comparator for that key. struct constraint_key_comparator { bool operator()(const constraint_key& l, const constraint_key& r) const { if (l.first->compare(r.first) < 0) return true; else if (l.first->compare(r.first) > 0) return false; if (l.second->compare(r.second) < 0) return true; else if (l.second->compare(r.second) > 0) return false; return false; } }; // The full definition of the constraint. typedef std::map map_constraint; typedef std::pair constraint; // Helper to create the map of constraints to give to the // simulation. void add_to_map(const std::list& list, map_constraint& feed_me) { for (std::list::const_iterator it = list.begin(); it != list.end(); ++it) { if (feed_me.find(it->first) == feed_me.end()) feed_me[it->first] = it->second; } } // This class helps to compare two automata in term of // size. struct automaton_size { automaton_size() : transitions(0), states(0) { } inline bool operator!=(const automaton_size& r) { return transitions != r.transitions || states != r.states; } inline bool operator<(const automaton_size& r) { if (states < r.states) return true; if (states > r.states) return false; if (transitions < r.transitions) return true; if (transitions > r.transitions) return false; return false; } inline bool operator>(const automaton_size& r) { if (states < r.states) return false; if (states > r.states) return true; if (transitions < r.transitions) return false; if (transitions > r.transitions) return true; return false; } int transitions; int states; }; // This class takes an automaton, and return a (maybe new) // automaton. If Cosimulation is equal to true, we create a new // automaton. Otherwise, we create a new one. The returned // automaton is similar to the old one, except that the acceptance // condition on the transitions are complemented. // There is a specialization below. template class acc_compl_automaton: public tgba_reachable_iterator_depth_first { public: acc_compl_automaton(const tgba* a) : tgba_reachable_iterator_depth_first(a), size(0), ea_(down_cast(const_cast(a))), ac_(ea_->all_acceptance_conditions(), ea_->neg_acceptance_conditions()) { assert(ea_); out_ = ea_; } void process_link(const state*, int, const state*, int, const tgba_succ_iterator* si) { bdd acc = ac_.complement(si->current_acceptance_conditions()); typename tgba_explicit_number::transition* t = ea_->get_transition(si); t->acceptance_conditions = acc; } void process_state(const state* s, int, tgba_succ_iterator*) { ++size; previous_class_[s] = bddfalse; old_name_[s] = s; order_.push_back(s); } ~acc_compl_automaton() { } public: size_t size; tgba_explicit_number* out_; map_state_bdd previous_class_; std::list order_; map_state_state old_name_; private: tgba_explicit_number* ea_; acc_compl ac_; }; // The specialization for Cosimulation equals to true: We copy the // automaton and transpose it at the same time. template class acc_compl_automaton: public tgba_reachable_iterator_depth_first { public: acc_compl_automaton(const tgba* a) : tgba_reachable_iterator_depth_first(a), size(0), out_(new tgba_explicit_number(a->get_dict())), ac_(a->all_acceptance_conditions(), a->neg_acceptance_conditions()), current_max(0) { a->get_dict()->register_all_variables_of(a, out_); out_->set_acceptance_conditions(a->all_acceptance_conditions()); const state* init_ = a->get_init_state(); out_->set_init_state(get_state(init_)); init_->destroy(); } inline unsigned get_state(const state* s) { map_state_unsigned::const_iterator i = state2int.find(s); if (i == state2int.end()) { i = state2int.insert(std::make_pair(s, ++current_max)).first; state* in_new_aut = out_->add_state(current_max); previous_class_[in_new_aut] = bddfalse; old_name_[in_new_aut] = s; order_.push_back(in_new_aut); } return i->second; } void process_link(const state* in_s, int, const state* out_s, int, const tgba_succ_iterator* si) { unsigned src = get_state(in_s); unsigned dst = get_state(out_s); // Note the order of src and dst: the transition is reversed. tgba_explicit_number::transition* t = out_->create_transition(dst, src); t->condition = si->current_condition(); if (!Sba) { bdd acc = ac_.complement(si->current_acceptance_conditions()); t->acceptance_conditions = acc; } else { // If the acceptance is interpreted as state-based, to // apply the reverse simulation on a SBA, we should pull // the acceptance of the destination state on its incoming // arcs (which now become outgoing args after // transposition). tgba_succ_iterator* it = out_->succ_iter(out_s); it->first(); if (!it->done()) { bdd acc = ac_.complement(it->current_acceptance_conditions()); t->acceptance_conditions = acc; } delete it; } } void process_state(const state*, int, tgba_succ_iterator*) { ++size; } ~acc_compl_automaton() { } public: size_t size; tgba_explicit_number* out_; map_state_bdd previous_class_; std::list order_; map_state_state old_name_; private: acc_compl ac_; map_state_unsigned state2int; unsigned current_max; }; // The direct_simulation. If Cosimulation is true, we are doing a // cosimulation. template class direct_simulation { protected: // Shortcut used in update_po and go_to_next_it. typedef std::map map_bdd_bdd; public: direct_simulation(const tgba* t, const map_constraint* map_cst = 0) : a_(0), po_size_(0), all_class_var_(bddtrue), map_cst_(map_cst), original_(t), dont_delete_old_(false) { // We need to do a dupexp for being able to run scc_map later. // new_original_ is the map that contains the relation between // the names (addresses) of the states in the automaton // returned by dupexp, and in automaton given in argument to // the constructor. a_ = tgba_dupexp_dfs(t, new_original_); scc_map_ = new scc_map(a_); scc_map_->build_map(); old_a_ = a_; acc_compl_automaton acc_compl(a_); // We'll start our work by replacing all the acceptance // conditions by their complement. acc_compl.run(); // Contains the relation between the names of the states in // the automaton returned by the complementation and the one // passed to the constructor of acc_compl. std::swap(old_name_, acc_compl.old_name_); a_ = acc_compl.out_; initial_state = a_->get_init_state(); // We use the previous run to know the size of the // automaton, and to class all the reachable states in the // map previous_class_. size_a_ = acc_compl.size; // Now, we have to get the bdd which will represent the // class. We register one bdd by state, because in the worst // case, |Class| == |State|. unsigned set_num = a_->get_dict() ->register_anonymous_variables(size_a_ + 1, this); all_acceptance_conditions_ = a_->all_acceptance_conditions(); all_proms_ = bdd_support(all_acceptance_conditions_); bdd_initial = bdd_ithvar(set_num++); bdd init = bdd_ithvar(set_num++); used_var_.push_back(init); // We fetch the result the run of acc_compl_automaton which // has recorded all the state in a hash table, and we set all // to init. for (map_state_bdd::iterator it = acc_compl.previous_class_.begin(); it != acc_compl.previous_class_.end(); ++it) { previous_class_[it->first] = init; } // Put all the anonymous variable in a queue, and record all // of these in a variable all_class_var_ which will be used // to understand the destination part in the signature when // building the resulting automaton. all_class_var_ = init; for (unsigned i = set_num; i < set_num + size_a_ - 1; ++i) { free_var_.push(i); all_class_var_ &= bdd_ithvar(i); } relation_[init] = init; std::swap(order_, acc_compl.order_); } // Reverse all the acceptance condition at the destruction of // this object, because it occurs after the return of the // function simulation. virtual ~direct_simulation() { a_->get_dict()->unregister_all_my_variables(this); delete scc_map_; if (!dont_delete_old_) delete old_a_; // a_ is a new automaton only if we are doing a cosimulation. if (Cosimulation) delete a_; } // Update the name of the classes. void update_previous_class() { std::list::iterator it_bdd = used_var_.begin(); // We run through the map bdd/list, and we update // the previous_class_ with the new data. for (map_bdd_lstate::iterator it = bdd_lstate_.begin(); it != bdd_lstate_.end(); ++it) { for (std::list::iterator it_s = it->second.begin(); it_s != it->second.end(); ++it_s) { // If the signature of a state is bddfalse (no // transitions) the class of this state is bddfalse // instead of an anonymous variable. It allows // simplifications in the signature by removing a // transition which has as a destination a state with // no outgoing transition. if (it->first == bddfalse) previous_class_[*it_s] = bddfalse; else previous_class_[*it_s] = *it_bdd; } ++it_bdd; } } void main_loop() { unsigned int nb_partition_before = 0; unsigned int nb_po_before = po_size_ - 1; while (nb_partition_before != bdd_lstate_.size() || nb_po_before != po_size_) { update_previous_class(); nb_partition_before = bdd_lstate_.size(); bdd_lstate_.clear(); nb_po_before = po_size_; po_size_ = 0; update_sig(); go_to_next_it(); } update_previous_class(); } // The core loop of the algorithm. tgba* run() { main_loop(); return build_result(); } // Take a state and compute its signature. bdd compute_sig(const state* src) { tgba_succ_iterator* sit = a_->succ_iter(src); bdd res = bddfalse; for (sit->first(); !sit->done(); sit->next()) { const state* dst = sit->current_state(); bdd acc = bddtrue; map_constraint::const_iterator it; // We are using new_original_[old_name_[...]] because // we have the constraints in the original automaton // which has been duplicated twice to get the current // automaton. if (map_cst_ && ((it = map_cst_ ->find(std::make_pair(new_original_[old_name_[src]], new_original_[old_name_[dst]]))) != map_cst_->end())) { acc = it->second; } else { acc = sit->current_acceptance_conditions(); } // to_add is a conjunction of the acceptance condition, // the label of the transition and the class of the // destination and all the class it implies. bdd to_add = acc & sit->current_condition() & relation_[previous_class_[dst]]; res |= to_add; dst->destroy(); } // When we Cosimulate, we add a special flag to differentiate // the initial state from the other. if (Cosimulation && initial_state == src) res |= bdd_initial; delete sit; return res; } void update_sig() { // Here we suppose that previous_class_ always contains // all the reachable states of this automaton. We do not // have to make (again) a traversal. We just have to run // through this map. for (std::list::const_iterator it = order_.begin(); it != order_.end(); ++it) { const state* src = previous_class_.find(*it)->first; bdd_lstate_[compute_sig(src)].push_back(src); } } // This method rename the color set, update the partial order. void go_to_next_it() { int nb_new_color = bdd_lstate_.size() - used_var_.size(); // If we have created more partitions, we need to use more // variables. for (int i = 0; i < nb_new_color; ++i) { assert(!free_var_.empty()); used_var_.push_back(bdd_ithvar(free_var_.front())); free_var_.pop(); } // If we have reduced the number of partition, we 'free' them // in the free_var_ list. for (int i = 0; i > nb_new_color; --i) { assert(!used_var_.empty()); free_var_.push(bdd_var(used_var_.front())); used_var_.pop_front(); } assert((bdd_lstate_.size() == used_var_.size()) || (bdd_lstate_.find(bddfalse) != bdd_lstate_.end() && bdd_lstate_.size() == used_var_.size() + 1)); // Now we make a temporary hash_table which links the tuple // "C^(i-1), N^(i-1)" to the new class coloring. If we // rename the class before updating the partial order, we // loose the information, and if we make it after, I can't // figure out how to apply this renaming on rel_. // It adds a data structure but it solves our problem. map_bdd_bdd now_to_next; std::list::iterator it_bdd = used_var_.begin(); for (map_bdd_lstate::iterator it = bdd_lstate_.begin(); it != bdd_lstate_.end(); ++it) { // If the signature of a state is bddfalse (which is // roughly equivalent to no transition) the class of // this state is bddfalse instead of an anonymous // variable. It allows simplifications in the signature // by removing a transition which has as a destination a // state with no outgoing transition. if (it->first == bddfalse) now_to_next[it->first] = bddfalse; else now_to_next[it->first] = *it_bdd; ++it_bdd; } update_po(now_to_next, relation_); } // This function computes the new po with previous_class_ and // the argument. `now_to_next' contains the relation between the // signature and the future name of the class. We need a // template parameter because we use this function with a // map_bdd_bdd, but later, we need a list_bdd_bdd. So to // factorize some code we use a template. template void update_po(const container_bdd_bdd& now_to_next, map_bdd_bdd& relation) { // This loop follows the pattern given by the paper. // foreach class do // | foreach class do // | | update po if needed // | od // od for (typename container_bdd_bdd::const_iterator it1 = now_to_next.begin(); it1 != now_to_next.end(); ++it1) { bdd accu = it1->second; for (typename container_bdd_bdd::const_iterator it2 = now_to_next.begin(); it2 != now_to_next.end(); ++it2) { // Skip the case managed by the initialization of accu. if (it1 == it2) continue; if (bdd_implies(it1->first, it2->first)) { accu &= it2->second; ++po_size_; } } relation[it1->second] = accu; } } automaton_size get_stat() const { assert(stat.states != 0); return stat; } bool result_is_deterministic() const { assert(stat.states != 0); return res_is_deterministic; } // Build the minimal resulting automaton. tgba* build_result() { // Now we need to create a state per partition. But the // problem is that we don't know exactly the class. We know // that it is a combination of the acceptance condition // contained in all_class_var_. So we need to make a little // workaround. We will create a map which will associate bdd // and unsigned. std::map bdd2state; unsigned int current_max = 0; // We have all the a_'s acceptances conditions // complemented. So we need to complement it when adding a // transition. We *must* keep the complemented because it // is easy to know if an acceptance condition is maximal or // not. acc_compl reverser(all_acceptance_conditions_, a_->neg_acceptance_conditions()); bdd_dict* d = a_->get_dict(); tgba_explicit_number* res = new tgba_explicit_number(d); d->register_all_variables_of(a_, res); res->set_acceptance_conditions(all_acceptance_conditions_); bdd sup_all_acc = bdd_support(all_acceptance_conditions_); // Non atomic propositions variables (= acc and class) bdd nonapvars = sup_all_acc & bdd_support(all_class_var_); // Create one state per partition. for (map_bdd_lstate::iterator it = bdd_lstate_.begin(); it != bdd_lstate_.end(); ++it) { res->add_state(++current_max); bdd part = previous_class_[*it->second.begin()]; // The difference between the two next lines is: // the first says "if you see A", the second "if you // see A and all the classes implied by it". bdd2state[part] = current_max; bdd2state[relation_[part]] = current_max; } // Acceptance of states. Only used if Sba && Cosimulation. std::vector accst; if (Sba && Cosimulation) accst.resize(current_max + 1, bddfalse); stat.states = bdd_lstate_.size(); stat.transitions = 0; unsigned nb_satoneset = 0; unsigned nb_minato = 0; // For each partition, we will create // all the transitions between the states. for (map_bdd_lstate::iterator it = bdd_lstate_.begin(); it != bdd_lstate_.end(); ++it) { // Get the signature. bdd sig = compute_sig(*(it->second.begin())); if (Cosimulation) sig = bdd_compose(sig, bddfalse, bdd_var(bdd_initial)); // Get all the variable in the signature. bdd sup_sig = bdd_support(sig); // Get the variable in the signature which represents the // conditions. bdd sup_all_atomic_prop = bdd_exist(sup_sig, nonapvars); // Get the part of the signature composed only with the atomic // proposition. bdd all_atomic_prop = bdd_exist(sig, nonapvars); // First loop over all possible valuations atomic properties. while (all_atomic_prop != bddfalse) { bdd one = bdd_satoneset(all_atomic_prop, sup_all_atomic_prop, bddtrue); all_atomic_prop -= one; // For each possible valuation, iterate over all possible // destination classes. We use minato_isop here, because // if the same valuation of atomic properties can go // to two different classes C1 and C2, iterating on // C1 + C2 with the above bdd_satoneset loop will see // C1 then (!C1)C2, instead of C1 then C2. // With minatop_isop, we ensure that the no negative // class variable will be seen (likewise for promises). minato_isop isop(sig & one); ++nb_satoneset; bdd cond_acc_dest; while ((cond_acc_dest = isop.next()) != bddfalse) { ++stat.transitions; ++nb_minato; // Take the transition, and keep only the variable which // are used to represent the class. bdd dest = bdd_existcomp(cond_acc_dest, all_class_var_); // Keep only ones who are acceptance condition. bdd acc = bdd_existcomp(cond_acc_dest, sup_all_acc); // Keep the other! bdd cond = bdd_existcomp(cond_acc_dest, sup_all_atomic_prop); // Because we have complemented all the acceptance // conditions on the input automaton, we must // revert them to create a new transition. acc = reverser.reverse_complement(acc); // Take the id of the source and destination. To // know the source, we must take a random state in // the list which is in the class we currently // work on. int src = bdd2state[previous_class_[*it->second.begin()]]; int dst = bdd2state[dest]; if (Cosimulation) std::swap(src, dst); // src or dst == 0 means "dest" or "prev..." isn't // in the map. so it is a bug. assert(src != 0); assert(dst != 0); // Create the transition, add the condition and the // acceptance condition. tgba_explicit_number::transition* t = res->create_transition(src, dst); t->condition = cond; if (Sba && Cosimulation) accst[dst] = acc; else t->acceptance_conditions = acc; } } } res->set_init_state(bdd2state[previous_class_ [a_->get_init_state()]]); res->merge_transitions(); // Mark all accepting state in a second pass, when // dealing with SBA in cosimulation. if (Sba && Cosimulation) for (unsigned snum = current_max; snum > 0; --snum) { const state* s = res->get_state(snum); tgba_succ_iterator* it = res->succ_iter(s); bdd acc = accst[snum]; for (it->first(); !it->done(); it->next()) { tgba_explicit_number::transition* t = res->get_transition(it); t->acceptance_conditions = acc; } delete it; } res_is_deterministic = nb_minato == nb_satoneset; return res; } // Debug: // In a first time, print the signature, and the print a list // of each state in this partition. // In a second time, print foreach state, who is where, // where is the new class name. void print_partition() { for (map_bdd_lstate::iterator it = bdd_lstate_.begin(); it != bdd_lstate_.end(); ++it) { std::cerr << "partition: " << bdd_format_isop(a_->get_dict(), it->first) << std::endl; for (std::list::iterator it_s = it->second.begin(); it_s != it->second.end(); ++it_s) { std::cerr << " - " << a_->format_state(*it_s) << std::endl; } } std::cerr << "\nPrevious iteration\n" << std::endl; for (map_state_bdd::const_iterator it = previous_class_.begin(); it != previous_class_.end(); ++it) { std::cerr << a_->format_state(it->first) << " was in " << bdd_format_set(a_->get_dict(), it->second) << std::endl; } } protected: // The automaton which is simulated. tgba_explicit_number* a_; tgba_explicit_number* old_a_; // Relation is aimed to represent the same thing than // rel_. The difference is in the way it does. // If A => A /\ A => B, rel will be (!A U B), but relation_ // will have A /\ B at the key A. This trick is due to a problem // with the computation of the resulting automaton with the signature. // rel_ will pollute the meaning of the signature. map_bdd_bdd relation_; // Represent the class of each state at the previous iteration. map_state_bdd previous_class_; // The list of state for each class at the current_iteration. // Computed in `update_sig'. map_bdd_lstate bdd_lstate_; // The queue of free bdd. They will be used as the identifier // for the class. std::queue free_var_; // The list of used bdd. They are in used as identifier for class. std::list used_var_; // Size of the automaton. unsigned int size_a_; // Used to know when there is no evolution in the po. Updated // in the `update_po' method. unsigned int po_size_; // All the class variable: bdd all_class_var_; // The flag to say if the outgoing state is initial or not bdd bdd_initial; // Initial state of the automaton we are working on state* initial_state; bdd all_proms_; automaton_size stat; // The order of the state. std::list order_; scc_map* scc_map_; map_state_state old_name_; map_state_state new_original_; // This table link a state in the current automaton with a state // in the original one. map_state_state old_old_name_; const map_constraint* map_cst_; const tgba* original_; bdd all_acceptance_conditions_; // This variable is used when we return the copy, so we avoid // deleting what we return. It is better! bool dont_delete_old_; bool res_is_deterministic; }; // For now, we don't try to handle cosimulation. class direct_simulation_dont_care: public direct_simulation { typedef std::vector > constraints; typedef std::map, // Constraints list. bdd_less_than>, bdd_less_than> constraint_list; typedef std::list > list_bdd_bdd; public: direct_simulation_dont_care(const tgba* t) : direct_simulation(t) { // This variable is used in the new signature. on_cycle_ = bdd_ithvar(a_->get_dict()->register_anonymous_variables(1, this)); // This one is used for the iteration on all the // possibilities. Avoid computing two times "no constraints". empty_seen_ = false; // If this variable is set to true, we have a number limit of // simulation to run. has_limit_ = false; notap = (bdd_support(all_acceptance_conditions_) & all_class_var_ & on_cycle_); } // This function computes the don't care signature of the state // src. This signature is similar to the classic one, excepts // that if the transition is on a SCC, we add a on_cycle_ on it, // otherwise we add !on_cycle_. This allows us to split the // signature later. bdd dont_care_compute_sig(const state* src) { tgba_succ_iterator* sit = a_->succ_iter(src); bdd res = bddfalse; unsigned scc = scc_map_->scc_of_state(old_name_[src]); bool sccacc = scc_map_->accepting(scc); for (sit->first(); !sit->done(); sit->next()) { const state* dst = sit->current_state(); bdd cl = previous_class_[dst]; bdd acc; if (scc != scc_map_->scc_of_state(old_name_[dst])) acc = !on_cycle_; else if (sccacc) acc = on_cycle_ & sit->current_acceptance_conditions(); else acc = on_cycle_ & all_proms_; bdd to_add = acc & sit->current_condition() & relation_[cl]; res |= to_add; } delete sit; return res; } // We used to have // sig(s1) = (f1 | g1) // sig(s2) = (f2 | g2) // and we say that s2 simulates s1 if sig(s1)=>sig(s2). // This amount to testing whether (f1|g1)=>(f2|g2), // which is equivalent to testing both // f1=>(f2|g2) and g1=>(f2|g2) // separately. // // Now we have a slightly improved version of this rule. // g1 and g2 are not on cycle, so they can make as many // promises as we wish, if that helps. Adding promises // to g2 will not help, but adding promises to g1 can. // // So we test whether // f1=>(f2|g2) // g1=>noprom(f2|g2) // Where noprom(f2|g2) removes all promises from f2|g2. // (g1 do not have promises, and neither do g2). bool could_imply_aux(bdd f1, bdd g1, bdd left_class, bdd right, bdd right_class) { (void) left_class; (void) right_class; bdd f2g2 = bdd_exist(right, on_cycle_); bdd f2g2n = bdd_exist(f2g2, all_proms_); bdd both = left_class & right_class; int lc = bdd_var(left_class); f1 = bdd_compose(f1, both, lc); g1 = bdd_compose(g1, both, lc); f2g2 = bdd_compose(f2g2, both, lc); f2g2n = bdd_compose(f2g2n, both, lc); return bdd_implies(f1, f2g2) && bdd_implies(g1, f2g2n); } bool could_imply(bdd left, bdd left_class, bdd right, bdd right_class) { bdd f1 = bdd_relprod(left, on_cycle_, on_cycle_); bdd g1 = bdd_relprod(left, !on_cycle_, on_cycle_); //bdd f1 = bdd_restrict(left, on_cycle_); //bdd g1 = bdd_restrict(left, !on_cycle_); return could_imply_aux(f1, g1, left_class, right, right_class); } void dont_care_update_po(const list_bdd_bdd& now_to_next, map_bdd_bdd& relation) { // This loop follows the pattern given by the paper. // foreach class do // | foreach class do // | | update po if needed // | od // od for (list_bdd_bdd::const_iterator it1 = now_to_next.begin(); it1 != now_to_next.end(); ++it1) { bdd accu = it1->second; bdd f1 = bdd_relprod(it1->first, on_cycle_, on_cycle_); bdd g1 = bdd_relprod(it1->first, !on_cycle_, on_cycle_); // bdd f1 = bdd_restrict(it1->first_, on_cycle_); // bdd g1 = bdd_restrict(it1->first_, !on_cycle_); for (list_bdd_bdd::const_iterator it2 = now_to_next.begin(); it2 != now_to_next.end(); ++it2) { // Skip the case managed by the initialization of accu. if (it1 == it2) continue; if (could_imply_aux(f1, g1, it1->second, it2->first, it2->second)) { accu &= it2->second; ++po_size_; } } relation[it1->second] = accu; } } #define ISOP(bdd) #bdd" - " << bdd_format_isop(a_->get_dict(), bdd) inline bool is_out_scc(bdd b) { return bddfalse != bdd_relprod(b, !on_cycle_, on_cycle_); // return bddfalse != bdd_restrict(b, !on_cycle_); } #define create_cstr(src, dst, constraint) \ std::make_pair(std::make_pair(src, dst), constraint) // This method solves three kind of problems, where we have two // conjunctions of variable (that corresponds to a particular // transition), and where left could imply right. // Three cases: // - αP₁ ⇒ xβP₁ where x is unknown. // - xβP₁ ⇒ αP₁ where x is unknown. // - xαP₁ ⇒ yβP₁ where x, y are unknown. void create_simple_constraint(bdd left, bdd right, const state* src_left, const state* src_right, std::list& constraint) { assert(src_left != src_right); // Determine which is the current case. bool out_scc_left = is_out_scc(left); bool out_scc_right = is_out_scc(right); bdd dest_class = bdd_existcomp(left, all_class_var_); assert(revert_relation_.find(dest_class) != revert_relation_.end()); const state* dst_left = revert_relation_[dest_class]; dest_class = bdd_existcomp(right, all_class_var_); const state* dst_right = revert_relation_[dest_class]; assert(src_left != dst_left || src_right != dst_right); left = bdd_exist(left, all_class_var_ & on_cycle_); right = bdd_exist(right, all_class_var_ & on_cycle_); if (!out_scc_left && out_scc_right) { bdd b = bdd_exist(right, notap); bdd add = bdd_exist(left & b, bdd_support(b)); if (add != bddfalse && bdd_exist(add, all_acceptance_conditions_) == bddtrue) { assert(src_right != dst_right); constraint .push_back(create_cstr(new_original_[old_name_[src_right]], new_original_[old_name_[dst_right]], add)); } } else if (out_scc_left && !out_scc_right) { bdd b = bdd_exist(left, notap); bdd add = bdd_exist(right & b, bdd_support(b)); if (add != bddfalse && bdd_exist(add, all_acceptance_conditions_) == bddtrue) { assert(src_left != dst_left); constraint .push_back(create_cstr(new_original_[old_name_[src_left]], new_original_[old_name_[dst_left]], add)); } } else if (out_scc_left && out_scc_right) { bdd b = bdd_exist(left, notap); bdd add = bdd_exist(right & b, bdd_support(b)); if (add != bddfalse && bdd_exist(add, all_acceptance_conditions_) == bddtrue) { assert(src_left != dst_left && src_right != dst_right); // FIXME: cas pas compris. constraint .push_back(create_cstr(new_original_[old_name_[src_left]], new_original_[old_name_[dst_left]], add)); constraint .push_back(create_cstr(new_original_[old_name_[src_right]], new_original_[old_name_[dst_right]], add)); } } else assert(0); } // This function run over the signatures, and select the // transitions that are out of a SCC and call the function // create_simple_constraint to solve the problem. // NOTE: Currently, this may not be the most accurate method, // because we check for equality in the destination part of the // signature. We may just check the destination that can be // implied instead. std::list create_new_constraint(const state* left, const state* right, map_state_bdd& state2sig) { bdd pcl = previous_class_[left]; bdd pcr = previous_class_[right]; bdd sigl = state2sig[left]; bdd sigr = state2sig[right]; std::list res; bdd ex = all_class_var_ & on_cycle_; bdd both = pcl & pcr; int lc = bdd_var(pcl); #define DEST(x) bdd_compose(bdd_existcomp(x, ex), both, lc) // Key is destination class, value is the signature part that // led to this destination class. map_bdd_bdd sigl_map; { minato_isop isop(sigl & on_cycle_); bdd cond_acc_dest; while ((cond_acc_dest = isop.next()) != bddfalse) sigl_map[DEST(cond_acc_dest)] |= cond_acc_dest; } { minato_isop isop(sigl & !on_cycle_); bdd cond_acc_dest; while ((cond_acc_dest = isop.next()) != bddfalse) sigl_map[DEST(cond_acc_dest)] |= cond_acc_dest; } map_bdd_bdd sigr_map; { minato_isop isop2(sigr & on_cycle_); bdd cond_acc_dest2; while ((cond_acc_dest2 = isop2.next()) != bddfalse) sigr_map[DEST(cond_acc_dest2)] |= cond_acc_dest2; } { minato_isop isop2(sigr & !on_cycle_); bdd cond_acc_dest2; while ((cond_acc_dest2 = isop2.next()) != bddfalse) sigr_map[DEST(cond_acc_dest2)] |= cond_acc_dest2; } // Iterate over the transitions of both states. for (map_bdd_bdd::const_iterator lit = sigl_map.begin(); lit != sigl_map.end(); ++lit) for (map_bdd_bdd::iterator rit = sigr_map.begin(); rit != sigr_map.end(); ++rit) { // And create constraints if any of the transitions // is out of the SCC and the left could imply the right. if ((is_out_scc(lit->second) || is_out_scc(rit->second)) && (bdd_exist(lit->first, on_cycle_) == bdd_exist(rit->first, on_cycle_))) { create_simple_constraint(lit->second, rit->second, left, right, res); } } return res; } inline automaton_size get_stat() const { return min_size_; } tgba* run() { // Iterate the simulation until the end. We just don't return // an automaton. This allows us to get all the information // about the states and their signature. main_loop(); // Compute the don't care signatures, map_bdd_lstate dont_care_bdd_lstate; // Useful to keep track of who is who. map_state_bdd dont_care_state2sig; map_state_bdd state2sig; list_bdd_bdd dont_care_now_to_now; map_bdd_state class2state; list_bdd_bdd now_to_now; bdd_lstate_.clear(); // Compute the don't care signature for all the states. for (std::list::const_iterator my_it = order_.begin(); my_it != order_.end(); ++my_it) { map_state_bdd::iterator it = previous_class_.find(*my_it); const state* src = it->first; bdd sig = dont_care_compute_sig(src); dont_care_bdd_lstate[sig].push_back(src); dont_care_state2sig[src] = sig; dont_care_now_to_now.push_back(std::make_pair(sig, it->second)); class2state[it->second] = it->first; sig = compute_sig(src); bdd_lstate_[sig].push_back(src); state2sig[src] = sig; now_to_now.push_back(std::make_pair(sig, it->second)); } map_bdd_bdd dont_care_relation; map_bdd_bdd relation; update_po(now_to_now, relation); dont_care_update_po(dont_care_now_to_now, dont_care_relation); constraint_list cc; for (map_bdd_bdd::iterator it = relation.begin(); it != relation.end(); ++it) { revert_relation_[it->second] = class2state[it->first]; } int number_constraints = 0; relation_ = relation; // order_ is here for the determinism. Here we make the diff // between the two tables: imply and could_imply. for (std::list::const_iterator my_it = order_.begin(); my_it != order_.end(); ++my_it) { map_state_bdd::iterator it = previous_class_.find(*my_it); assert(relation.find(it->second) != relation.end()); assert(dont_care_relation.find(it->second) != dont_care_relation.end()); bdd care_rel = relation[it->second]; bdd dont_care_rel = dont_care_relation[it->second]; if (care_rel == dont_care_rel) continue; // If they are different we necessarily have // dont_care_rel == care_rel & diff bdd diff = bdd_exist(dont_care_rel, care_rel); assert(dont_care_rel == (care_rel & diff)); assert(diff != bddtrue); do { bdd cur_diff = bdd_ithvar(bdd_var(diff)); cc[it->second][cur_diff] = create_new_constraint(it->first, class2state[cur_diff], dont_care_state2sig); ++number_constraints; diff = bdd_high(diff); } while (diff != bddtrue); } #ifndef NDEBUG for (map_bdd_state::const_iterator i = class2state.begin(); i != class2state.end(); ++i) assert(previous_class_[i->second] == i->first); #endif tgba* min = 0; map_constraint cstr; if (has_limit_) rec(cc, cstr, &min, limit_); else rec(cc, cstr, &min); return min; } #define ERASE(inner_map, bigger_map, it) \ inner_map.erase(it); \ if (inner_map.empty()) \ bigger_map.erase(bigger_map.begin()) // Add and erase. void add_to_map_imply(constraint_list& constraints, map_constraint& cstr) { constraint_list::iterator it = constraints.begin(); std::map, bdd_less_than>::iterator it2 = it->second.begin(); add_to_map(it2->second, cstr); bdd implied_list = relation_[it2->first]; // it2->first: // destination class. ERASE(it->second, constraints, it2); if (constraints.empty()) return; it = constraints.begin(); // At worst, implied_list is equal to it2->first. while (implied_list != bddtrue) { bdd cur_implied = bdd_ithvar(bdd_var(implied_list)); std::map, bdd_less_than>::iterator tmp = it->second.find(cur_implied); if (tmp != it->second.end()) { add_to_map(tmp->second, cstr); ERASE(it->second, constraints, tmp); if (constraints.empty()) return; } implied_list = bdd_high(implied_list); } } // Compute recursively all the combinations. void rec(constraint_list constraints, map_constraint cstr, tgba** min, int max_depth = std::numeric_limits::max()) { assert(max_depth > 0); while (!constraints.empty()) { if (!--max_depth) break; add_to_map_imply(constraints, cstr); rec(constraints, cstr, min, max_depth); } if (empty_seen_ && cstr.empty()) return; else if (cstr.empty()) empty_seen_ = true; direct_simulation dir_sim(original_, &cstr); tgba* tmp = dir_sim.run(); automaton_size cur_size = dir_sim.get_stat(); if (*min == 0 || min_size_ > cur_size) { delete *min; *min = tmp; min_size_ = cur_size; res_is_deterministic = dir_sim.result_is_deterministic(); } else { delete tmp; } } void set_limit(int n) { has_limit_ = true; limit_ = n; } private: // This bdd is used to differentiate parts of the signature that // are in a SCC and those that are not. bdd on_cycle_; map_bdd_bdd dont_care_relation_; map_bdd_state revert_relation_; automaton_size min_size_; bool empty_seen_; bool has_limit_; int limit_; bdd notap; }; } // End namespace anonymous. tgba* simulation(const tgba* t) { direct_simulation simul(t); return simul.run(); } tgba* simulation_sba(const tgba* t) { direct_simulation simul(t); return simul.run(); } tgba* cosimulation(const tgba* t) { direct_simulation simul(t); return simul.run(); } tgba* cosimulation_sba(const tgba* t) { direct_simulation simul(t); return simul.run(); } template tgba* iterated_simulations_(const tgba* t) { tgba* res = const_cast (t); automaton_size prev; automaton_size next; do { prev = next; direct_simulation simul(res); tgba* maybe_res = simul.run(); if (res != t) delete res; if (simul.result_is_deterministic()) { res = maybe_res; break; } unique_ptr after_simulation(maybe_res); direct_simulation cosimul(after_simulation); unique_ptr after_cosimulation(cosimul.run()); next = cosimul.get_stat(); if (Sba) res = scc_filter_states(after_cosimulation); else res = scc_filter(after_cosimulation, false); } while (prev != next); return res; } tgba* iterated_simulations(const tgba* t) { return iterated_simulations_(t); } tgba* iterated_simulations_sba(const tgba* t) { return iterated_simulations_(t); } tgba* dont_care_simulation(const tgba* t, int limit) { direct_simulation sim(t); tgba* tmp = sim.run(); direct_simulation_dont_care s(tmp); if (limit > 0) s.set_limit(limit); tgba* res = s.run(); delete tmp; return res; } tgba* dont_care_iterated_simulations(const tgba* t, int limit) { tgba* res = const_cast (t); automaton_size prev; automaton_size next; do { prev = next; unique_ptr after_simulation(dont_care_simulation(res, limit)); if (res != t) delete res; direct_simulation cosimul(after_simulation); unique_ptr after_cosimulation(cosimul.run()); next = cosimul.get_stat(); res = scc_filter(after_cosimulation, true); } while (prev != next); return res; } } // End namespace spot.