// -*- coding: utf-8 -*-
// Copyright (C) 2015, 2016, 2017 Laboratoire de Recherche et
// Développement de l'Epita.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
#include
#include
#include
#include
#include
#include
#include
namespace spot
{
namespace
{
struct st2gba_state
{
acc_cond::mark_t pend;
unsigned s;
st2gba_state(unsigned st, acc_cond::mark_t bv = -1U):
pend(bv), s(st)
{
}
};
struct st2gba_state_hash
{
size_t
operator()(const st2gba_state& s) const
{
std::hash h;
return s.s ^ h(s.pend);
}
};
struct st2gba_state_equal
{
bool
operator()(const st2gba_state& left,
const st2gba_state& right) const
{
if (left.s != right.s)
return false;
return left.pend == right.pend;
}
};
typedef std::vector terms_t;
terms_t cnf_terms(const acc_cond::acc_code& code)
{
assert(!code.empty());
terms_t res;
auto pos = &code.back();
auto end = &code.front();
if (pos->sub.op == acc_cond::acc_op::And)
--pos;
while (pos >= end)
{
auto term_end = pos - 1 - pos->sub.size;
if (pos->sub.op == acc_cond::acc_op::Or)
--pos;
acc_cond::mark_t m = 0U;
while (pos > term_end)
{
assert(pos->sub.op == acc_cond::acc_op::Inf);
m |= pos[-1].mark;
pos -= 2;
}
res.emplace_back(m);
}
return res;
}
}
// Specialized conversion for Streett -> TGBA
// ============================================
//
// Christof Löding's Diploma Thesis: Methods for the
// Transformation of ω-Automata: Complexity and Connection to
// Second Order Logic. Section 3.4.3, gives a transition
// from Streett with |Q| states to BA with |Q|*(4^n-3^n+2)
// states, if n is the number of acceptance pairs.
//
// Duret-Lutz et al. (ATVA'2009): On-the-fly Emptiness Check of
// Transition-based Streett Automata. Section 3.3 contains a
// conversion from transition-based Streett Automata to TGBA using
// the generalized Büchi acceptance to limit the explosion. It goes
// from Streett with |Q| states to (T)GBA with |Q|*(2^n+1) states.
// However the definition of the number of acceptance sets in that
// paper is suboptimal: only n are needed, not 2^n.
//
// This implements this second version.
twa_graph_ptr
streett_to_generalized_buchi(const const_twa_graph_ptr& in)
{
// While "t" is Streett, it is also generalized Büchi, so
// do not do anything.
if (in->acc().is_generalized_buchi())
return std::const_pointer_cast(in);
std::vector pairs;
bool res = in->acc().is_streett_like(pairs);
if (!res)
throw std::runtime_error("streett_to_generalized_buchi() should only be"
" called on automata with Streett-like"
" acceptance");
// In Streett acceptance, inf sets are odd, while fin sets are
// even.
acc_cond::mark_t inf;
acc_cond::mark_t fin;
std::tie(inf, fin) = in->get_acceptance().used_inf_fin_sets();
unsigned p = inf.count();
// At some point we will remove anything that is not used as Inf.
acc_cond::mark_t to_strip = in->acc().all_sets() - inf;
acc_cond::mark_t inf_alone = 0U;
if (!p)
return remove_fin(in);
unsigned numsets = in->acc().num_sets();
std::vector fin_to_infpairs(numsets, 0U);
std::vector inf_to_finpairs(numsets, 0U);
for (auto pair: pairs)
{
if (pair.fin)
for (unsigned mark: pair.fin.sets())
fin_to_infpairs[mark] |= pair.inf;
else
inf_alone |= pair.inf;
for (unsigned mark: pair.inf.sets())
inf_to_finpairs[mark] |= pair.fin;
}
scc_info si(in);
// Compute the acceptance sets present in each SCC
unsigned nscc = si.scc_count();
std::vector> sccfi;
sccfi.reserve(nscc);
for (unsigned s = 0; s < nscc; ++s)
{
auto acc = si.acc_sets_of(s); // {0,1,2,3,4,6,7,9}
auto acc_fin = acc & fin; // {0, 2, 4,6}
auto acc_inf = acc & inf; // { 1, 3, 7,9}
acc_cond::mark_t fin_wo_inf = 0U;
for (unsigned mark: acc_fin.sets())
if (!fin_to_infpairs[mark] || (fin_to_infpairs[mark] - acc_inf))
fin_wo_inf.set(mark);
acc_cond::mark_t inf_wo_fin = 0U;
for (unsigned mark: acc_inf.sets())
if (!inf_to_finpairs[mark] || (inf_to_finpairs[mark] - acc_fin))
inf_wo_fin.set(mark);
sccfi.emplace_back(fin_wo_inf, inf_wo_fin,
acc_fin == 0U, acc_inf == 0U);
}
auto out = make_twa_graph(in->get_dict());
out->copy_ap_of(in);
out->prop_copy(in, {false, false, false, false, false, true});
out->set_generalized_buchi(p);
// Map st2gba pairs to the state numbers used in out.
typedef std::unordered_map bs2num_map;
bs2num_map bs2num;
// Queue of states to be processed.
typedef std::deque queue_t;
queue_t todo;
st2gba_state s(in->get_init_state_number());
bs2num[s] = out->new_state();
todo.emplace_back(s);
bool sbacc = in->prop_state_acc().is_true();
// States of the original automaton are marked with s.pend == -1U.
const acc_cond::mark_t orig_copy(-1U);
while (!todo.empty())
{
s = todo.front();
todo.pop_front();
unsigned src = bs2num[s];
unsigned scc_src = si.scc_of(s.s);
bool maybe_acc_scc = !si.is_rejecting_scc(scc_src);
acc_cond::mark_t scc_fin_wo_inf;
acc_cond::mark_t scc_inf_wo_fin;
bool no_fin;
bool no_inf;
std::tie(scc_fin_wo_inf, scc_inf_wo_fin, no_fin, no_inf)
= sccfi[scc_src];
for (auto& t: in->out(s.s))
{
acc_cond::mark_t pend = s.pend;
acc_cond::mark_t acc = 0U;
bool maybe_acc = maybe_acc_scc && (scc_src == si.scc_of(t.dst));
if (pend != orig_copy)
{
if (!maybe_acc)
continue;
// No point going to some place we will never leave
if (t.acc & scc_fin_wo_inf)
continue;
// For any Fin set we see, we want to see the
// corresponding Inf set.
for (unsigned mark: (t.acc & fin).sets())
pend |= fin_to_infpairs[mark];
// If we see some Inf set immediately, they are not
// pending anymore.
pend -= t.acc & inf;
// Label this transition with all non-pending
// inf sets. The strip will shift everything
// to the correct numbers in the targets.
acc = (inf - pend).strip(to_strip);
// Adjust the pending sets to what will be necessary
// required on the destination state.
if (sbacc)
{
auto a = in->state_acc_sets(t.dst);
if (a & scc_fin_wo_inf)
continue;
for (unsigned m: (a & fin).sets())
pend |= fin_to_infpairs[m];
pend -= a & inf;
}
pend |= inf_alone;
}
else if (no_fin && maybe_acc)
{
// If the acceptance is (Fin(0) | Inf(1)) & Inf(2)
// but we do not see any Fin set in this SCC, a
// mark {2} should become {1,2} before striping.
acc = (t.acc | (inf - scc_inf_wo_fin)).strip(to_strip);
}
assert((acc & out->acc().all_sets()) == acc);
st2gba_state d(t.dst, pend);
// Have we already seen this destination?
unsigned dest;
auto dres = bs2num.emplace(d, 0);
if (!dres.second)
{
dest = dres.first->second;
}
else // No, this is a new state
{
dest = dres.first->second = out->new_state();
todo.emplace_back(d);
}
out->new_edge(src, dest, t.cond, acc);
// Nondeterministically jump to level ∅. We need to do
// that only once per cycle. As an approximation, we
// only to that for transition where t.src >= t.dst as
// this has to occur at least once per cycle.
if (pend == orig_copy && (t.src >= t.dst) && maybe_acc && !no_fin)
{
acc_cond::mark_t stpend = 0U;
if (sbacc)
{
auto a = in->state_acc_sets(t.dst);
if (a & scc_fin_wo_inf)
continue;
for (unsigned m: (a & fin).sets())
stpend |= fin_to_infpairs[m];
stpend -= a & inf;
}
st2gba_state d(t.dst, stpend | inf_alone);
// Have we already seen this destination?
unsigned dest;
auto dres = bs2num.emplace(d, 0);
if (!dres.second)
{
dest = dres.first->second;
}
else // No, this is a new state
{
dest = dres.first->second = out->new_state();
todo.emplace_back(d);
}
out->new_edge(src, dest, t.cond);
}
}
}
return out;
}
twa_graph_ptr
streett_to_generalized_buchi_maybe(const const_twa_graph_ptr& in)
{
static unsigned min = [&]() {
const char* c = getenv("SPOT_STREETT_CONV_MIN");
if (!c)
return 3;
errno = 0;
int val = strtol(c, nullptr, 10);
if (val < 0 || errno != 0)
throw std::runtime_error("unexpected value for SPOT_STREETT_CONV_MIN");
return val;
}();
std::vector pairs;
bool res = in->acc().is_streett_like(pairs);
if (!res || min == 0 || min > pairs.size())
return nullptr;
else
return streett_to_generalized_buchi(in);
}
/// \brief Take an automaton with any acceptance condition and return
/// an equivalent Generalized Büchi automaton.
twa_graph_ptr
to_generalized_buchi(const const_twa_graph_ptr& aut)
{
auto maybe = streett_to_generalized_buchi_maybe(aut);
if (maybe)
return maybe;
auto res = remove_fin(cleanup_acceptance(aut));
if (res->acc().is_generalized_buchi())
return res;
auto cnf = res->get_acceptance().to_cnf();
// If we are very lucky, building a CNF actually gave us a GBA...
if (cnf.empty() ||
(cnf.size() == 2 && cnf.back().sub.op == acc_cond::acc_op::Inf))
{
res->set_acceptance(res->num_sets(), cnf);
cleanup_acceptance_here(res);
return res;
}
// Handle false specifically. We want the output
// an automaton with Acceptance: t, that has a single
// state without successor.
if (cnf.is_f())
{
assert(cnf.front().mark == 0U);
res = make_twa_graph(aut->get_dict());
res->set_init_state(res->new_state());
res->prop_state_acc(true);
res->prop_weak(true);
res->prop_universal(true);
res->prop_stutter_invariant(true);
return res;
}
auto terms = cnf_terms(cnf);
unsigned nterms = terms.size();
assert(nterms > 0);
res->set_generalized_buchi(nterms);
for (auto& t: res->edges())
{
acc_cond::mark_t cur_m = t.acc;
acc_cond::mark_t new_m = 0U;
for (unsigned n = 0; n < nterms; ++n)
if (cur_m & terms[n])
new_m.set(n);
t.acc = new_m;
}
return res;
}
namespace
{
// If the DNF is
// Fin(1)&Inf(2)&Inf(4) | Fin(2)&Fin(3)&Inf(1) |
// Inf(1)&Inf(3) | Inf(1)&Inf(2) | Fin(4)
// this returns the following vector of pairs:
// [({1}, {2,4})
// ({2,3}, {1}),
// ({}, {1,3}),
// ({}, {2}),
// ({4}, t)]
static std::vector>
split_dnf_acc(const acc_cond::acc_code& acc)
{
std::vector> res;
if (acc.empty())
{
res.emplace_back(0U, 0U);
return res;
}
auto pos = &acc.back();
if (pos->sub.op == acc_cond::acc_op::Or)
--pos;
auto start = &acc.front();
while (pos > start)
{
if (pos->sub.op == acc_cond::acc_op::Fin)
{
// We have only a Fin term, without Inf. In this case
// only, the Fin() may encode a disjunction of sets.
for (auto s: pos[-1].mark.sets())
res.emplace_back(acc_cond::mark_t({s}), 0U);
pos -= pos->sub.size + 1;
}
else
{
// We have a conjunction of Fin and Inf sets.
auto end = pos - pos->sub.size - 1;
acc_cond::mark_t fin = 0U;
acc_cond::mark_t inf = 0U;
while (pos > end)
{
switch (pos->sub.op)
{
case acc_cond::acc_op::And:
--pos;
break;
case acc_cond::acc_op::Fin:
fin |= pos[-1].mark;
assert(pos[-1].mark.count() == 1);
pos -= 2;
break;
case acc_cond::acc_op::Inf:
inf |= pos[-1].mark;
pos -= 2;
break;
case acc_cond::acc_op::FinNeg:
case acc_cond::acc_op::InfNeg:
case acc_cond::acc_op::Or:
SPOT_UNREACHABLE();
break;
}
}
assert(pos == end);
res.emplace_back(fin, inf);
}
}
return res;
}
static twa_graph_ptr
to_generalized_rabin_aux(const const_twa_graph_ptr& aut,
bool share_inf, bool complement)
{
auto res = cleanup_acceptance(aut);
auto oldacc = res->get_acceptance();
if (complement)
res->set_acceptance(res->acc().num_sets(), oldacc.complement());
{
std::vector pairs;
if (res->acc().is_generalized_rabin(pairs))
{
if (complement)
res->set_acceptance(res->acc().num_sets(), oldacc);
return res;
}
}
auto dnf = res->get_acceptance().to_dnf();
if (dnf.is_f())
{
if (complement)
res->set_acceptance(0, acc_cond::acc_code::t());
return res;
}
auto v = split_dnf_acc(dnf);
// Decide how we will rename each input set.
//
// inf_rename is only used if hoa_style=false, to
// reuse previously used Inf sets.
unsigned ns = res->num_sets();
std::vector rename(ns);
std::vector inf_rename(ns);
unsigned next_set = 0;
// The output acceptance conditions.
acc_cond::acc_code code =
complement ? acc_cond::acc_code::t() : acc_cond::acc_code::f();
for (auto& i: v)
{
unsigned fin_set = 0U;
if (!complement)
{
for (auto s: i.first.sets())
rename[s].set(next_set);
fin_set = next_set++;
}
acc_cond::mark_t infsets = 0U;
if (share_inf)
for (auto s: i.second.sets())
{
unsigned n = inf_rename[s];
if (n == 0)
n = inf_rename[s] = next_set++;
rename[s].set(n);
infsets.set(n);
}
else // HOA style
{
for (auto s: i.second.sets())
{
unsigned n = next_set++;
rename[s].set(n);
infsets.set(n);
}
}
// The definition of Streett wants the Fin first in clauses,
// so we do the same for generalized Streett since HOA does
// not specify anything. See
// https://github.com/adl/hoaf/issues/62
if (complement)
{
for (auto s: i.first.sets())
rename[s].set(next_set);
fin_set = next_set++;
auto pair = acc_cond::inf({fin_set});
pair |= acc_cond::acc_code::fin(infsets);
pair &= std::move(code);
code = std::move(pair);
}
else
{
auto pair = acc_cond::acc_code::inf(infsets);
pair &= acc_cond::fin({fin_set});
pair |= std::move(code);
code = std::move(pair);
}
}
// Fix the automaton
res->set_acceptance(next_set, code);
for (auto& e: res->edges())
{
acc_cond::mark_t m = 0U;
for (auto s: e.acc.sets())
m |= rename[s];
e.acc = m;
}
return res;
}
}
twa_graph_ptr
to_generalized_rabin(const const_twa_graph_ptr& aut,
bool share_inf)
{
return to_generalized_rabin_aux(aut, share_inf, false);
}
twa_graph_ptr
to_generalized_streett(const const_twa_graph_ptr& aut,
bool share_fin)
{
return to_generalized_rabin_aux(aut, share_fin, true);
}
}