// -*- coding: utf-8 -*- // Copyright (C) 2013 Laboratoire de Recherche et Développement // de l'Epita. // // This file is part of Spot, a model checking library. // // Spot is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // // Spot is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . #include #include #include #include "dtbasat.hh" #include "reachiter.hh" #include #include #include "scc.hh" #include "tgba/bddprint.hh" #include "ltlast/constant.hh" #include "stats.hh" #include "misc/tmpfile.hh" #include "misc/satsolver.hh" // If the following DEBUG macro is set to 1, the temporary files used // to communicate with the SAT-solver will be left in the current // directory. (The files dtba-sat.cnf and dtba-sat.out contain the // input and output for the last successful minimization attempted, or // for the only failed attempt if the minimization failed.) // // Additionally, the CNF file will be output with a comment before // each clause, and an additional output file (dtba-sat.dbg) will be // created with a list of all positive variables in the result and // their meaning. // // Note that the code use unique temporary filenames, so it is safe to // run several such minimizations in parallel. It only when DEBUG=1 // that some of these files will be renamed to the above hard-coded // names, possibly causing confusion if multiple minimizations are // debugged in parallel and in the same directory. #define DEBUG 0 #if DEBUG #define dout out << "c " #define trace std::cerr #else #define dout while (0) std::cout #define trace dout #endif namespace spot { namespace { static bdd_dict* debug_dict = 0; struct transition { int src; bdd cond; int dst; transition(int src, bdd cond, int dst) : src(src), cond(cond), dst(dst) { } bool operator<(const transition& other) const { if (this->src < other.src) return true; if (this->src > other.src) return false; if (this->dst < other.dst) return true; if (this->dst > other.dst) return false; return this->cond.id() < other.cond.id(); } bool operator==(const transition& other) const { return (this->src == other.src && this->dst == other.dst && this->cond.id() == other.cond.id()); } }; struct src_cond { int src; bdd cond; src_cond(int src, bdd cond) : src(src), cond(cond) { } bool operator<(const src_cond& other) const { if (this->src < other.src) return true; if (this->src > other.src) return false; return this->cond.id() < other.cond.id(); } bool operator==(const src_cond& other) const { return (this->src == other.src && this->cond.id() == other.cond.id()); } }; struct state_pair { int a; int b; state_pair(int a, int b) : a(a), b(b) { } bool operator<(const state_pair& other) const { if (this->a < other.a) return true; if (this->a > other.a) return false; if (this->b < other.b) return true; if (this->b > other.b) return false; return false; } }; struct path { int src_cand; int src_ref; int dst_cand; int dst_ref; path(int src_cand, int src_ref, int dst_cand, int dst_ref) : src_cand(src_cand), src_ref(src_ref), dst_cand(dst_cand), dst_ref(dst_ref) { } bool operator<(const path& other) const { if (this->src_cand < other.src_cand) return true; if (this->src_cand > other.src_cand) return false; if (this->src_ref < other.src_ref) return true; if (this->src_ref > other.src_ref) return false; if (this->dst_cand < other.dst_cand) return true; if (this->dst_cand > other.dst_cand) return false; if (this->dst_ref < other.dst_ref) return true; if (this->dst_ref > other.dst_ref) return false; return false; } }; std::ostream& operator<<(std::ostream& os, const state_pair& p) { os << "<" << p.a << "," << p.b << ">"; return os; } std::ostream& operator<<(std::ostream& os, const transition& t) { os << "<" << t.src << "," << bdd_format_formula(debug_dict, t.cond) << "," << t.dst << ">"; return os; } std::ostream& operator<<(std::ostream& os, const path& p) { os << "<" << p.src_cand << "," << p.src_ref << "," << p.dst_cand << "," << p.dst_ref << ">"; return os; } struct dict { typedef std::map trans_map; trans_map transid; trans_map transacc; typedef std::map rev_map; rev_map revtransid; rev_map revtransacc; std::map prodid; std::map pathid_ref; std::map pathid_cand; int nvars; typedef Sgi::hash_map state_map; typedef Sgi::hash_map int_map; state_map state_to_int; int_map int_to_state; int cand_size; ~dict() { state_map::const_iterator s = state_to_int.begin(); while (s != state_to_int.end()) // Always advance the iterator before deleting the key. s++->first->destroy(); } }; class filler_dfs: public tgba_reachable_iterator_depth_first { protected: dict& d; int size_; bdd ap_; bool state_based_; scc_map& sm_; public: filler_dfs(const tgba* aut, dict& d, bdd ap, bool state_based, scc_map& sm) : tgba_reachable_iterator_depth_first(aut), d(d), ap_(ap), state_based_(state_based), sm_(sm) { d.nvars = 0; } int size() { return size_; } void end() { size_ = seen.size(); if (d.cand_size == -1) d.cand_size = size_ - 1; for (dict::state_map::const_iterator i2 = seen.begin(); i2 != seen.end(); ++i2) { int i = i2->second; d.int_to_state[i] = i2->first; unsigned i_scc = sm_.scc_of_state(i2->first); for (int j = 1; j <= d.cand_size; ++j) { d.prodid[state_pair(j, i)] = ++d.nvars; if (sm_.trivial(i_scc)) continue; for (dict::state_map::const_iterator k2 = seen.begin(); k2 != seen.end(); ++k2) { int k = k2->second; if (sm_.scc_of_state(k2->first) != i_scc) continue; for (int l = 1; l <= d.cand_size; ++l) { path p(j, i, l, k); d.pathid_ref[p] = ++d.nvars; d.pathid_cand[p] = ++d.nvars; } } } } std::swap(d.state_to_int, seen); for (int i = 1; i <= d.cand_size; ++i) { int transacc = -1; if (state_based_) // All outgoing transitions use the same acceptance variable. transacc = ++d.nvars; for (int j = 1; j <= d.cand_size; ++j) { bdd all = bddtrue; while (all != bddfalse) { bdd one = bdd_satoneset(all, ap_, bddfalse); all -= one; transition t(i, one, j); d.transid[t] = ++d.nvars; d.revtransid.insert(dict::rev_map::value_type(d.nvars, t)); int ta = d.transacc[t] = state_based_ ? transacc : ++d.nvars; d.revtransacc.insert(dict::rev_map::value_type(ta, t)); } } } } }; static void dtba_to_sat(std::ostream& out, const tgba* ref, dict& d, bool state_based) { clause_counter nclauses; int ref_size = 0; scc_map sm(ref); sm.build_map(); bdd ap = sm.aprec_set_of(sm.initial()); // Count the number of atomic propositions int nap = 0; { bdd cur = ap; while (cur != bddtrue) { ++nap; cur = bdd_high(cur); } nap = 1 << nap; } // Number all the SAT variable we may need. { filler_dfs f(ref, d, ap, state_based, sm); f.run(); ref_size = f.size(); } // empty automaton is impossible if (d.cand_size == 0) { out << "p cnf 1 2\n-1 0\n1 0\n"; return; } // An empty line for the header out << " \n"; #if DEBUG debug_dict = ref->get_dict(); dout << "ref_size: " << ref_size << "\n"; dout << "cand_size: " << d.cand_size << "\n"; #endif dout << "symmetry-breaking clauses\n"; int j = 0; bdd all = bddtrue; while (all != bddfalse) { bdd s = bdd_satoneset(all, ap, bddfalse); all -= s; for (int i = 1; i < d.cand_size; ++i) for (int k = (i - 1) * nap + j + 3; k <= d.cand_size; ++k) { transition t(i, s, k); int ti = d.transid[t]; dout << "¬" << t << "\n"; out << -ti << " 0\n"; ++nclauses; } ++j; } if (!nclauses.nb_clauses()) dout << "(none)\n"; dout << "(1) the candidate automaton is complete\n"; for (int q1 = 1; q1 <= d.cand_size; ++q1) { bdd all = bddtrue; while (all != bddfalse) { bdd s = bdd_satoneset(all, ap, bddfalse); all -= s; #if DEBUG dout; for (int q2 = 1; q2 <= d.cand_size; q2++) { transition t(q1, s, q2); out << t << "δ"; if (q2 != d.cand_size) out << " ∨ "; } out << "\n"; #endif for (int q2 = 1; q2 <= d.cand_size; q2++) { transition t(q1, s, q2); int ti = d.transid[t]; out << ti << " "; } out << "0\n"; ++nclauses; } } dout << "(2) the initial state is reachable\n"; dout << state_pair(1, 1) << "\n"; out << d.prodid[state_pair(1, 1)] << " 0\n"; ++nclauses; for (std::map::const_iterator pit = d.prodid.begin(); pit != d.prodid.end(); ++pit) { int q1 = pit->first.a; int q1p = pit->first.b; unsigned q1p_scc = sm.scc_of_state(d.int_to_state[q1p]); if (!sm.trivial(q1p_scc)) { dout << "(2) states Cand[" << q1 << "] and Ref[" << q1p << "] are 0-length paths\n"; path p(q1, q1p, q1, q1p); dout << pit->first << " → (" << p << "R ∧ " << p << "C)\n"; out << -pit->second << " " << d.pathid_ref[p] << " 0\n"; out << -pit->second << " " << d.pathid_cand[p] << " 0\n"; nclauses += 2; } dout << "(3) augmenting paths based on Cand[" << q1 << "] and Ref[" << q1p << "]\n"; tgba_succ_iterator* it = ref->succ_iter(d.int_to_state[q1p]); for (it->first(); !it->done(); it->next()) { const state* dps = it->current_state(); int dp = d.state_to_int[dps]; dps->destroy(); bdd all = it->current_condition(); while (all != bddfalse) { bdd s = bdd_satoneset(all, ap, bddfalse); all -= s; for (int q2 = 1; q2 <= d.cand_size; q2++) { transition t(q1, s, q2); int ti = d.transid[t]; state_pair p2(q2, dp); int succ = d.prodid[p2]; if (pit->second == succ) continue; dout << pit->first << " ∧ " << t << "δ → " << p2 << "\n"; out << -pit->second << " " << -ti << " " << succ << " 0\n"; ++nclauses; } } } delete it; } bdd all_acc = ref->all_acceptance_conditions(); // construction of contraints (4,5) : all loops in the product // where no accepting run is detected in the ref. automaton, // must also be marked as not accepting in the cand. automaton for (int q1p = 1; q1p <= ref_size; ++q1p) { unsigned q1p_scc = sm.scc_of_state(d.int_to_state[q1p]); if (sm.trivial(q1p_scc)) continue; for (int q2p = 1; q2p <= ref_size; ++q2p) { // We are only interested in transition that can form a // cycle, so they must belong to the same SCC. if (sm.scc_of_state(d.int_to_state[q2p]) != q1p_scc) continue; for (int q1 = 1; q1 <= d.cand_size; ++q1) for (int q2 = 1; q2 <= d.cand_size; ++q2) { path p1(q1, q1p, q2, q2p); dout << "(4&5) matching paths from reference based on " << p1 << "\n"; int pid1 = d.pathid_ref[p1]; tgba_succ_iterator* it = ref->succ_iter(d.int_to_state[q2p]); for (it->first(); !it->done(); it->next()) { const state* dps = it->current_state(); // Skip destinations not in the SCC. if (sm.scc_of_state(dps) != q1p_scc) { dps->destroy(); continue; } int dp = d.state_to_int[dps]; dps->destroy(); if (it->current_acceptance_conditions() == all_acc) continue; for (int q3 = 1; q3 <= d.cand_size; ++q3) { if (dp == q1p && q3 == q1) // (4) looping { bdd all = it->current_condition(); while (all != bddfalse) { bdd s = bdd_satoneset(all, ap, bddfalse); all -= s; transition t(q2, s, q1); int ti = d.transid[t]; int ta = d.transacc[t]; dout << p1 << "R ∧ " << t << "δ → ¬" << t << "F\n"; out << -pid1 << " " << -ti << " " << -ta << " 0\n"; ++nclauses; } } else // (5) not looping { path p2 = path(q1, q1p, q3, dp); int pid2 = d.pathid_ref[p2]; if (pid1 == pid2) continue; bdd all = it->current_condition(); while (all != bddfalse) { bdd s = bdd_satoneset(all, ap, bddfalse); all -= s; transition t(q2, s, q3); int ti = d.transid[t]; dout << p1 << "R ∧ " << t << "δ → " << p2 << "R\n"; out << -pid1 << " " << -ti << " " << pid2 << " 0\n"; ++nclauses; } } } } delete it; } } } // construction of contraints (6,7): all loops in the product // where accepting run is detected in the ref. automaton, must // also be marked as accepting in the candidate. for (int q1p = 1; q1p <= ref_size; ++q1p) { unsigned q1p_scc = sm.scc_of_state(d.int_to_state[q1p]); if (sm.trivial(q1p_scc)) continue; for (int q2p = 1; q2p <= ref_size; ++q2p) { // We are only interested in transition that can form a // cycle, so they must belong to the same SCC. if (sm.scc_of_state(d.int_to_state[q2p]) != q1p_scc) continue; for (int q1 = 1; q1 <= d.cand_size; ++q1) for (int q2 = 1; q2 <= d.cand_size; ++q2) { path p1(q1, q1p, q2, q2p); dout << "(6&7) matching paths from candidate based on " << p1 << "\n"; int pid1 = d.pathid_cand[p1]; tgba_succ_iterator* it = ref->succ_iter(d.int_to_state[q2p]); for (it->first(); !it->done(); it->next()) { const state* dps = it->current_state(); // Skip destinations not in the SCC. if (sm.scc_of_state(dps) != q1p_scc) { dps->destroy(); continue; } int dp = d.state_to_int[dps]; dps->destroy(); for (int q3 = 1; q3 <= d.cand_size; q3++) { if (dp == q1p && q3 == q1) // (6) looping { // We only care about the looping case if // it is accepting in the reference. if (it->current_acceptance_conditions() != all_acc) continue; bdd all = it->current_condition(); while (all != bddfalse) { bdd s = bdd_satoneset(all, ap, bddfalse); all -= s; transition t(q2, s, q1); int ti = d.transid[t]; int ta = d.transacc[t]; dout << p1 << "C ∧ " << t << "δ → " << t << "F\n"; out << -pid1 << " " << -ti << " " << ta << " 0\n"; ++nclauses; } } else // (7) no loop { path p2 = path(q1, q1p, q3, dp); int pid2 = d.pathid_cand[p2]; if (pid1 == pid2) continue; bdd all = it->current_condition(); while (all != bddfalse) { bdd s = bdd_satoneset(all, ap, bddfalse); all -= s; transition t(q2, s, q3); int ti = d.transid[t]; int ta = d.transacc[t]; dout << p1 << "C ∧ " << t << "δ ∧ ¬" << t << "F → " << p2 << "C\n"; out << -pid1 << " " << -ti << " " << ta << " " << pid2 << " 0\n"; ++nclauses; } } } } delete it; } } } out.seekp(0); out << "p cnf " << d.nvars << " " << nclauses.nb_clauses(); } static tgba_explicit_number* sat_build(const sat_solution& solution, dict& satdict, const tgba* aut, bool state_based) { bdd_dict* autdict = aut->get_dict(); tgba_explicit_number* a = new tgba_explicit_number(autdict); autdict->register_all_variables_of(aut, a); const ltl::formula* t = ltl::constant::true_instance(); bdd acc = bdd_ithvar(autdict->register_acceptance_variable(t, a)); a->set_acceptance_conditions(acc); for (int s = 1; s < satdict.cand_size; ++s) a->add_state(s); state_explicit_number::transition* last_aut_trans = 0; const transition* last_sat_trans = 0; #if DEBUG std::fstream out("dtba-sat.dbg", std::ios_base::trunc | std::ios_base::out); out.exceptions(std::ifstream::failbit | std::ifstream::badbit); std::set positive; #endif dout << "--- transition variables ---\n"; std::set acc_states; std::set seen_trans; for (sat_solution::const_iterator i = solution.begin(); i != solution.end(); ++i) { int v = *i; if (v < 0) // FIXME: maybe we can have (v < NNN)? continue; #if DEBUG positive.insert(v); #endif dict::rev_map::const_iterator t = satdict.revtransid.find(v); if (t != satdict.revtransid.end()) { // Skip (s,l,d2) if we have already seen some (s,l,d1). if (seen_trans.insert(src_cond(t->second.src, t->second.cond)).second) { last_aut_trans = a->create_transition(t->second.src, t->second.dst); last_aut_trans->condition = t->second.cond; last_sat_trans = &t->second; dout << v << "\t" << t->second << "δ\n"; // Mark the transition as accepting if the source is. if (state_based && acc_states.find(t->second.src) != acc_states.end()) last_aut_trans->acceptance_conditions = acc; } } else { t = satdict.revtransacc.find(v); if (t != satdict.revtransacc.end()) { dout << v << "\t" << t->second << "F\n"; if (last_sat_trans && t->second == *last_sat_trans) { assert(!state_based); // This assumes that the SAT solvers output // variables in increasing order. last_aut_trans->acceptance_conditions = acc; } else if (state_based) { // Accepting translations actually correspond to // states and are announced before listing // outgoing transitions. Again, this assumes // that the SAT solvers output variables in // increasing order. acc_states.insert(t->second.src); } } } } #if DEBUG dout << "--- state_pair variables ---\n"; for (std::map::const_iterator pit = satdict.prodid.begin(); pit != satdict.prodid.end(); ++pit) if (positive.find(pit->second) != positive.end()) dout << pit->second << "\t" << pit->first << "\n"; dout << "--- pathid_cand variables ---\n"; for (std::map::const_iterator pit = satdict.pathid_cand.begin(); pit != satdict.pathid_cand.end(); ++pit) if (positive.find(pit->second) != positive.end()) dout << pit->second << "\t" << pit->first << "C\n"; dout << "--- pathid_ref variables ---\n"; for (std::map::const_iterator pit = satdict.pathid_ref.begin(); pit != satdict.pathid_ref.end(); ++pit) if (positive.find(pit->second) != positive.end()) dout << pit->second << "\t" << pit->first << "R\n"; #endif a->merge_transitions(); return a; } static bool xrename(const char* from, const char* to) { if (!rename(from, to)) return false; std::ostringstream msg; msg << "cannot rename " << from << " to " << to; perror(msg.str().c_str()); return true; } } tgba_explicit_number* dtba_sat_synthetize(const tgba* a, int target_state_number, bool state_based) { trace << "dtba_sat_synthetize(..., states = " << target_state_number << ", state_based = " << state_based << ")\n"; dict* current = 0; temporary_file* cnf = 0; temporary_file* out = 0; current = new dict; current->cand_size = target_state_number; try { cnf = create_tmpfile("dtba-sat-", ".cnf"); std::fstream cnfs(cnf->name(), std::ios_base::trunc | std::ios_base::out); cnfs.exceptions(std::ifstream::failbit | std::ifstream::badbit); dtba_to_sat(cnfs, a, *current, state_based); cnfs.close(); } catch (...) { if (DEBUG) xrename(cnf->name(), "dtba-sat.cnf"); delete current; delete cnf; throw; } out = create_tmpfile("dtba-sat-", ".out"); satsolver(cnf, out); sat_solution solution = satsolver_get_solution(out->name()); tgba_explicit_number* res = 0; if (!solution.empty()) res = sat_build(solution, *current, a, state_based); delete current; if (DEBUG) { xrename(out->name(), "dtba-sat.out"); xrename(cnf->name(), "dtba-sat.cnf"); } delete out; delete cnf; trace << "dtba_sat_synthetize(...) = " << res << "\n"; return res; } tgba_explicit_number* dtba_sat_minimize(const tgba* a, bool state_based) { int n_states = stats_reachable(a).states; tgba_explicit_number* prev = 0; for (;;) { tgba_explicit_number* next = dtba_sat_synthetize(prev ? prev : a, --n_states, state_based); if (next == 0) break; delete prev; prev = next; } return prev; } tgba_explicit_number* dtba_sat_minimize_dichotomy(const tgba* a, bool state_based) { int max_states = stats_reachable(a).states - 1; int min_states = 1; tgba_explicit_number* prev = 0; while (min_states <= max_states) { int target = (max_states + min_states) / 2; tgba_explicit_number* next = dtba_sat_synthetize(prev ? prev : a, target, state_based); if (next == 0) { min_states = target + 1; } else { delete prev; prev = next; max_states = target - 1; } } return prev; } }