// Copyright (C) 2011, 2012, 2013 Laboratoire de Recherche et
// Developpement de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
#ifndef SPOT_LTLVISIT_SIMPLIFY_HH
# define SPOT_LTLVISIT_SIMPLIFY_HH
#include "ltlast/formula.hh"
#include "bdd.h"
#include "tgba/bdddict.hh"
#include
namespace spot
{
namespace ltl
{
class ltl_simplifier_options
{
public:
ltl_simplifier_options(bool basics = true,
bool synt_impl = true,
bool event_univ = true,
bool containment_checks = false,
bool containment_checks_stronger = false,
bool nenoform_stop_on_boolean = false,
bool reduce_size_strictly = false,
bool boolean_to_isop = false,
bool favor_event_univ = false)
: reduce_basics(basics),
synt_impl(synt_impl),
event_univ(event_univ),
containment_checks(containment_checks),
containment_checks_stronger(containment_checks_stronger),
nenoform_stop_on_boolean(nenoform_stop_on_boolean),
reduce_size_strictly(reduce_size_strictly),
boolean_to_isop(boolean_to_isop),
favor_event_univ(favor_event_univ)
{
}
bool reduce_basics;
bool synt_impl;
bool event_univ;
bool containment_checks;
bool containment_checks_stronger;
// If true, Boolean subformulae will not be put into
// negative normal form.
bool nenoform_stop_on_boolean;
// If true, some rules that produce slightly larger formulae
// will be disabled. Those larger formulae are normally easier
// to translate, so we recommend to set this to false.
bool reduce_size_strictly;
// If true, Boolean subformulae will be rewritten in ISOP form.
bool boolean_to_isop;
// Try to isolate subformulae that are eventual and universal.
bool favor_event_univ;
};
// fwd declaration to hide technical details.
class ltl_simplifier_cache;
/// \ingroup ltl_rewriting
/// \brief Rewrite or simplify \a f in various ways.
class SPOT_API ltl_simplifier
{
public:
ltl_simplifier(bdd_dict* dict = 0);
ltl_simplifier(const ltl_simplifier_options& opt, bdd_dict* dict = 0);
~ltl_simplifier();
/// Simplify the formula \a f (using options supplied to the
/// constructor).
const formula* simplify(const formula* f);
/// Build the negative normal form of formula \a f.
/// All negations of the formula are pushed in front of the
/// atomic propositions. Operators <=>, =>, xor are all removed
/// (calling spot::ltl::unabbreviate_ltl is not needed).
///
/// \param f The formula to normalize.
/// \param negated If \c true, return the negative normal form of
/// \c !f
const formula*
negative_normal_form(const formula* f, bool negated = false);
/// \brief Syntactic implication.
///
/// Returns whether \a f syntactically implies \a g.
///
/// This is adapted from
/** \verbatim
@InProceedings{ somenzi.00.cav,
author = {Fabio Somenzi and Roderick Bloem},
title = {Efficient {B\"u}chi Automata for {LTL} Formulae},
booktitle = {Proceedings of the 12th International Conference on
Computer Aided Verification (CAV'00)},
pages = {247--263},
year = {2000},
volume = {1855},
series = {Lecture Notes in Computer Science},
publisher = {Springer-Verlag}
}
\endverbatim */
///
bool syntactic_implication(const formula* f, const formula* g);
/// \brief Syntactic implication with one negated argument.
///
/// If \a right is true, this method returns whether
/// \a f implies !\a g. If \a right is false, this returns
/// whether !\a f implies \a g.
bool syntactic_implication_neg(const formula* f, const formula* g,
bool right);
/// \brief check whether two formulae are equivalent.
///
/// This costly check performs up to four translations,
/// two products, and two emptiness checks.
bool are_equivalent(const formula* f, const formula* g);
/// \brief Check whether \a f implies \a g.
///
/// This operation is costlier than syntactic_implication()
/// because it requires two translation, one product and one
/// emptiness check.
bool implication(const formula* f, const formula* g);
/// \brief Convert a Boolean formula as a BDD.
///
/// If you plan to use this method, be sure to pass a bdd_dict
/// to the constructor.
bdd as_bdd(const formula* f);
/// \brief Clear the as_bdd() cache.
///
/// Calling this function is recommended before running other
/// algorithms that create BDD variables in a more natural
/// order. For instance ltl_to_tgba_fm() will usually be more
/// efficient if the BDD variables for atomic propositions have
/// not been ordered before hand.
///
/// This also clears the language containment cache.
void clear_as_bdd_cache();
/// Return the bdd_dict used.
bdd_dict* get_dict() const;
/// Cached version of spot::ltl::star_normal_form().
const formula* star_normal_form(const formula* f);
/// \brief Rewrite a Boolean formula \a f into as an irredundant
/// sum of product.
///
/// This uses a cache, so it is OK to call this with identical
/// arguments.
const formula* boolean_to_isop(const formula* f);
/// Dump statistics about the caches.
void print_stats(std::ostream& os) const;
private:
ltl_simplifier_cache* cache_;
// Copy disallowed.
ltl_simplifier(const ltl_simplifier&) = delete;
void operator=(const ltl_simplifier&) = delete;
bool owndict;
};
}
}
#endif // SPOT_LTLVISIT_SIMPLIFY_HH