// -*- coding utf-8 -*-
// Copyright (C) 2010, 2011, 2012 Laboratoire de Recherche et
// Développement de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//#define TRACE
#include
#ifdef TRACE
#define trace std::clog
#else
#define trace while (0) std::clog
#endif
#include "ltlast/atomic_prop.hh"
#include "ltlast/constant.hh"
#include "tgba/formula2bdd.hh"
#include "tgba/sba.hh"
#include "misc/bddop.hh"
#include
#include "ltlvisit/tostring.hh"
#include
#include "tgba/bddprint.hh"
#include "tgbaalgos/gtec/nsheap.hh"
#include
#include "tgba2ta.hh"
#include "taalgos/statessetbuilder.hh"
#include "ta/tgtaexplicit.hh"
using namespace std;
namespace spot
{
namespace
{
typedef std::pair pair_state_iter;
}
void
transform_to_single_pass_automaton(ta_explicit* testing_automata,
state_ta_explicit* artificial_livelock_accepting_state = 0)
{
if (artificial_livelock_accepting_state != 0)
{
state_ta_explicit* artificial_livelock_accepting_state_added =
testing_automata->add_state(artificial_livelock_accepting_state);
// unique artificial_livelock_accepting_state
assert(artificial_livelock_accepting_state_added
== artificial_livelock_accepting_state);
artificial_livelock_accepting_state->set_livelock_accepting_state(true);
artificial_livelock_accepting_state->free_transitions();
}
ta::states_set_t states_set = testing_automata->get_states_set();
ta::states_set_t::iterator it;
state_ta_explicit::transitions* transitions_to_livelock_states =
new state_ta_explicit::transitions;
for (it = states_set.begin(); it != states_set.end(); it++)
{
state_ta_explicit* source = static_cast (*it);
transitions_to_livelock_states->clear();
state_ta_explicit::transitions* trans = source->get_transitions();
state_ta_explicit::transitions::iterator it_trans;
if (trans != 0)
for (it_trans = trans->begin(); it_trans != trans->end();)
{
state_ta_explicit* dest = (*it_trans)->dest;
state_ta_explicit::transitions* dest_trans =
(dest)->get_transitions();
bool dest_trans_empty = dest_trans == 0 || dest_trans->empty();
//select transitions where a destination is a livelock state
// which isn't a Buchi accepting state and has successors
if (dest->is_livelock_accepting_state()
&& (!dest->is_accepting_state()) && (!dest_trans_empty))
{
transitions_to_livelock_states->push_front(*it_trans);
}
//optimization to have, after
// minimization, an unique livelock state which has no successors
if (dest->is_livelock_accepting_state() && (dest_trans_empty))
{
dest->set_accepting_state(false);
}
++it_trans;
}
if (transitions_to_livelock_states != 0)
{
state_ta_explicit::transitions::iterator it_trans;
for (it_trans = transitions_to_livelock_states->begin(); it_trans
!= transitions_to_livelock_states->end(); it_trans++)
{
if (artificial_livelock_accepting_state != 0)
{
testing_automata->create_transition(source,
(*it_trans)->condition,
(*it_trans)->acceptance_conditions,
artificial_livelock_accepting_state, true);
}
else
{
testing_automata->create_transition(source,
(*it_trans)->condition,
(*it_trans)->acceptance_conditions,
((*it_trans)->dest)->stuttering_reachable_livelock,
true);
}
}
}
}
delete transitions_to_livelock_states;
for (it = states_set.begin(); it != states_set.end(); it++)
{
state_ta_explicit* state = static_cast (*it);
state_ta_explicit::transitions* state_trans =
(state)->get_transitions();
bool state_trans_empty = state_trans == 0 || state_trans->empty();
if (state->is_livelock_accepting_state()
&& (!state->is_accepting_state()) && (!state_trans_empty))
state->set_livelock_accepting_state(false);
}
}
void
compute_livelock_acceptance_states(ta_explicit* testing_automata,
bool single_pass_emptiness_check,
state_ta_explicit* artificial_livelock_accepting_state)
{
// We use five main data in this algorithm:
// * sscc: a stack of strongly stuttering-connected components (SSCC)
scc_stack_ta sscc;
// * arc, a stack of acceptance conditions between each of these SCC,
std::stack arc;
// * h: a hash of all visited nodes, with their order,
// (it is called "Hash" in Couvreur's paper)
numbered_state_heap* h =
numbered_state_heap_hash_map_factory::instance()->build();
///< Heap of visited states.
// * num: the number of visited nodes. Used to set the order of each
// visited node,
int num = 0;
// * todo: the depth-first search stack. This holds pairs of the
// form (STATE, ITERATOR) where ITERATOR is a tgba_succ_iterator
// over the successors of STATE. In our use, ITERATOR should
// always be freed when TODO is popped, but STATE should not because
// it is also used as a key in H.
std::stack todo;
// * init: the set of the depth-first search initial states
std::stack init_set;
ta::states_set_t::const_iterator it;
ta::states_set_t init_states = testing_automata->get_initial_states_set();
for (it = init_states.begin(); it != init_states.end(); it++)
{
state* init_state = (*it);
init_set.push(init_state);
}
while (!init_set.empty())
{
// Setup depth-first search from initial states.
{
state_ta_explicit* init =
down_cast (init_set.top());
init_set.pop();
state_ta_explicit* init_clone = init;
numbered_state_heap::state_index_p h_init = h->find(init_clone);
if (h_init.first)
continue;
h->insert(init_clone, ++num);
sscc.push(num);
arc.push(bddfalse);
sscc.top().is_accepting
= testing_automata->is_accepting_state(init);
tgba_succ_iterator* iter = testing_automata->succ_iter(init);
iter->first();
todo.push(pair_state_iter(init, iter));
}
while (!todo.empty())
{
state* curr = todo.top().first;
numbered_state_heap::state_index_p spi = h->find(curr);
// If we have reached a dead component, ignore it.
if (*spi.second == -1)
{
todo.pop();
continue;
}
// We are looking at the next successor in SUCC.
tgba_succ_iterator* succ = todo.top().second;
// If there is no more successor, backtrack.
if (succ->done())
{
// We have explored all successors of state CURR.
// Backtrack TODO.
todo.pop();
// fill rem with any component removed,
numbered_state_heap::state_index_p spi = h->index(curr);
assert(spi.first);
sscc.rem().push_front(curr);
// When backtracking the root of an SSCC, we must also
// remove that SSCC from the ROOT stacks. We must
// discard from H all reachable states from this SSCC.
assert(!sscc.empty());
if (sscc.top().index == *spi.second)
{
// removing states
std::list::iterator i;
bool is_livelock_accepting_sscc = (sscc.rem().size() > 1)
&& ((sscc.top().is_accepting) || (sscc.top().condition
== testing_automata->all_acceptance_conditions()));
trace << "*** sscc.size() = ***"
<< sscc.size() << std::endl;
for (i = sscc.rem().begin(); i != sscc.rem().end(); ++i)
{
numbered_state_heap::state_index_p spi = h->index((*i));
assert(spi.first->compare(*i) == 0);
assert(*spi.second != -1);
*spi.second = -1;
if (is_livelock_accepting_sscc)
{
// if it is an accepting sscc add the state to
// G (=the livelock-accepting states set)
trace << "*** sscc.size() > 1: states: ***"
<< testing_automata->format_state(*i)
<< std::endl;
state_ta_explicit * livelock_accepting_state =
down_cast (*i);
livelock_accepting_state->
set_livelock_accepting_state(true);
if (single_pass_emptiness_check)
{
livelock_accepting_state
->set_accepting_state(true);
livelock_accepting_state
->stuttering_reachable_livelock
= livelock_accepting_state;
}
}
}
assert(!arc.empty());
sscc.pop();
arc.pop();
}
// automata reduction
testing_automata->delete_stuttering_and_hole_successors(curr);
delete succ;
// Do not delete CURR: it is a key in H.
continue;
}
// Fetch the values destination state we are interested in...
state* dest = succ->current_state();
bdd acc_cond = succ->current_acceptance_conditions();
// ... and point the iterator to the next successor, for
// the next iteration.
succ->next();
// We do not need SUCC from now on.
// Are we going to a new state through a stuttering transition?
bool is_stuttering_transition =
testing_automata->get_state_condition(curr)
== testing_automata->get_state_condition(dest);
state* dest_clone = dest;
spi = h->find(dest_clone);
// Is this a new state?
if (!spi.first)
{
if (!is_stuttering_transition)
{
init_set.push(dest);
dest_clone->destroy();
continue;
}
// Number it, stack it, and register its successors
// for later processing.
h->insert(dest_clone, ++num);
sscc.push(num);
arc.push(acc_cond);
sscc.top().is_accepting = testing_automata->is_accepting_state(
dest);
tgba_succ_iterator* iter = testing_automata->succ_iter(dest);
iter->first();
todo.push(pair_state_iter(dest, iter));
continue;
}
// If we have reached a dead component, ignore it.
if (*spi.second == -1)
continue;
trace
<< "***compute_livelock_acceptance_states: CYCLE***" << std::endl;
if (!curr->compare(dest))
{
state_ta_explicit * self_loop_state =
down_cast (curr);
assert(self_loop_state);
if (testing_automata->is_accepting_state(self_loop_state)
|| (acc_cond
== testing_automata->all_acceptance_conditions()))
{
self_loop_state->set_livelock_accepting_state(true);
if (single_pass_emptiness_check)
{
self_loop_state->set_accepting_state(true);
self_loop_state->stuttering_reachable_livelock
= self_loop_state;
}
}
trace
<< "***compute_livelock_acceptance_states: CYCLE: self_loop_state***"
<< std::endl;
}
// Now this is the most interesting case. We have reached a
// state S1 which is already part of a non-dead SSCC. Any such
// non-dead SSCC has necessarily been crossed by our path to
// this state: there is a state S2 in our path which belongs
// to this SSCC too. We are going to merge all states between
// this S1 and S2 into this SSCC.
//
// This merge is easy to do because the order of the SSCC in
// ROOT is ascending: we just have to merge all SSCCs from the
// top of ROOT that have an index greater to the one of
// the SSCC of S2 (called the "threshold").
int threshold = *spi.second;
std::list rem;
bool acc = false;
while (threshold < sscc.top().index)
{
assert(!sscc.empty());
assert(!arc.empty());
acc |= sscc.top().is_accepting;
acc_cond |= sscc.top().condition;
acc_cond |= arc.top();
rem.splice(rem.end(), sscc.rem());
sscc.pop();
arc.pop();
}
// Note that we do not always have
// threshold == sscc.top().index
// after this loop, the SSCC whose index is threshold might have
// been merged with a lower SSCC.
// Accumulate all acceptance conditions into the merged SSCC.
sscc.top().is_accepting |= acc;
sscc.top().condition |= acc_cond;
sscc.rem().splice(sscc.rem().end(), rem);
}
}
delete h;
if ((artificial_livelock_accepting_state != 0)
|| single_pass_emptiness_check)
transform_to_single_pass_automaton(testing_automata,
artificial_livelock_accepting_state);
}
ta_explicit*
build_ta(ta_explicit* ta, bdd atomic_propositions_set_, bool degeneralized,
bool single_pass_emptiness_check, bool artificial_livelock_state_mode)
{
std::stack todo;
const tgba* tgba_ = ta->get_tgba();
const sba* sba_ = down_cast(tgba_);
assert(!degeneralized || sba_);
// build Initial states set:
state* tgba_init_state = tgba_->get_init_state();
bdd tgba_condition = tgba_->support_conditions(tgba_init_state);
bdd satone_tgba_condition;
while ((satone_tgba_condition = bdd_satoneset(tgba_condition,
atomic_propositions_set_, bddtrue)) != bddfalse)
{
tgba_condition -= satone_tgba_condition;
state_ta_explicit* init_state;
if (degeneralized)
{
init_state =
new state_ta_explicit(tgba_init_state->clone(),
satone_tgba_condition, true,
sba_->state_is_accepting(tgba_init_state));
}
else
{
init_state =
new state_ta_explicit(tgba_init_state->clone(),
satone_tgba_condition, true, false);
}
state_ta_explicit* s = ta->add_state(init_state);
assert(s == init_state);
ta->add_to_initial_states_set(s);
todo.push(init_state);
}
tgba_init_state->destroy();
while (!todo.empty())
{
state_ta_explicit* source = todo.top();
todo.pop();
tgba_succ_iterator* tgba_succ_it =
tgba_->succ_iter(source->get_tgba_state());
for (tgba_succ_it->first(); !tgba_succ_it->done(); tgba_succ_it->next())
{
const state* tgba_state = tgba_succ_it->current_state();
bdd tgba_condition = tgba_succ_it->current_condition();
bdd tgba_acceptance_conditions =
tgba_succ_it->current_acceptance_conditions();
bdd satone_tgba_condition;
while ((satone_tgba_condition = bdd_satoneset(tgba_condition,
atomic_propositions_set_, bddtrue)) != bddfalse)
{
tgba_condition -= satone_tgba_condition;
bdd all_props = bddtrue;
bdd dest_condition;
if (satone_tgba_condition == source->get_tgba_condition())
while ((dest_condition = bdd_satoneset(all_props,
atomic_propositions_set_, bddtrue)) != bddfalse)
{
all_props -= dest_condition;
state_ta_explicit* new_dest;
if (degeneralized)
{
new_dest = new state_ta_explicit
(tgba_state->clone(),
dest_condition,
false,
sba_->state_is_accepting(tgba_state));
}
else
{
new_dest = new state_ta_explicit
(tgba_state->clone(), dest_condition, false, false);
}
state_ta_explicit* dest = ta->add_state(new_dest);
if (dest != new_dest)
{
// the state dest already exists in the automaton
new_dest->get_tgba_state()->destroy();
delete new_dest;
}
else
{
todo.push(dest);
}
ta->create_transition(source, bdd_setxor(
source->get_tgba_condition(),
dest->get_tgba_condition()),
tgba_acceptance_conditions, dest);
}
}
tgba_state->destroy();
}
delete tgba_succ_it;
}
state_ta_explicit* artificial_livelock_accepting_state = 0;
trace << "*** build_ta: artificial_livelock_accepting_state_mode = ***"
<< artificial_livelock_state_mode << std::endl;
if (artificial_livelock_state_mode)
{
single_pass_emptiness_check = true;
artificial_livelock_accepting_state = new state_ta_explicit(
ta->get_tgba()->get_init_state(), bddtrue, false, false, true, 0);
trace
<< "*** build_ta: artificial_livelock_accepting_state = ***"
<< artificial_livelock_accepting_state << std::endl;
}
compute_livelock_acceptance_states(ta, single_pass_emptiness_check,
artificial_livelock_accepting_state);
return ta;
}
ta_explicit*
tgba_to_ta(const tgba* tgba_, bdd atomic_propositions_set_,
bool degeneralized, bool artificial_initial_state_mode,
bool single_pass_emptiness_check, bool artificial_livelock_state_mode)
{
ta_explicit* ta;
state* tgba_init_state = tgba_->get_init_state();
if (artificial_initial_state_mode)
{
state_ta_explicit* artificial_init_state =
new state_ta_explicit(tgba_init_state->clone(), bddfalse, true);
ta = new spot::ta_explicit(tgba_, tgba_->all_acceptance_conditions(),
artificial_init_state);
}
else
{
ta = new spot::ta_explicit(tgba_, tgba_->all_acceptance_conditions());
}
tgba_init_state->destroy();
// build ta automata:
build_ta(ta, atomic_propositions_set_, degeneralized,
single_pass_emptiness_check, artificial_livelock_state_mode);
// (degeneralized=true) => TA
if (degeneralized)
return ta;
// (degeneralized=false) => GTA
// adapt a GTA to remove acceptance conditions from states
ta::states_set_t states_set = ta->get_states_set();
ta::states_set_t::iterator it;
for (it = states_set.begin(); it != states_set.end(); it++)
{
state_ta_explicit* state = static_cast (*it);
if (state->is_accepting_state())
{
state_ta_explicit::transitions* trans = state->get_transitions();
state_ta_explicit::transitions::iterator it_trans;
for (it_trans = trans->begin(); it_trans != trans->end();
it_trans++)
{
(*it_trans)->acceptance_conditions
= ta->all_acceptance_conditions();
}
state->set_accepting_state(false);
}
}
return ta;
}
tgta_explicit*
tgba_to_tgta(const tgba* tgba_, bdd atomic_propositions_set_)
{
state* tgba_init_state = tgba_->get_init_state();
state_ta_explicit* artificial_init_state = new state_ta_explicit(
tgba_init_state->clone(), bddfalse, true);
tgba_init_state->destroy();
tgta_explicit* tgta = new spot::tgta_explicit(tgba_,
tgba_->all_acceptance_conditions(), artificial_init_state);
// build a Generalized TA automaton involving a single_pass_emptiness_check
// (without an artificial livelock state):
ta_explicit* ta = tgta->get_ta();
build_ta(ta, atomic_propositions_set_, false, true, false);
trace << "***tgba_to_tgbta: POST build_ta***" << std::endl;
// adapt a ta automata to build tgta automata :
ta::states_set_t states_set = ta->get_states_set();
ta::states_set_t::iterator it;
tgba_succ_iterator* initial_states_iter =
ta->succ_iter(ta->get_artificial_initial_state());
initial_states_iter->first();
if (initial_states_iter->done())
{
delete initial_states_iter;
return tgta;
}
bdd first_state_condition = initial_states_iter->current_condition();
delete initial_states_iter;
bdd bdd_stutering_transition = bdd_setxor(first_state_condition,
first_state_condition);
for (it = states_set.begin(); it != states_set.end(); it++)
{
state_ta_explicit* state = static_cast (*it);
state_ta_explicit::transitions* trans = state->get_transitions();
if (state->is_livelock_accepting_state())
{
bool trans_empty = (trans == 0 || trans->empty());
if (trans_empty || state->is_accepting_state())
{
ta->create_transition(state, bdd_stutering_transition,
ta->all_acceptance_conditions(), state);
}
}
if (state->compare(ta->get_artificial_initial_state()))
ta->create_transition(state, bdd_stutering_transition,
bddfalse, state);
state->set_livelock_accepting_state(false);
state->set_accepting_state(false);
trace << "***tgba_to_tgbta: POST create_transition ***" << std::endl;
}
return tgta;
}
}