// -*- coding: utf-8 -*-
// Copyright (C) 2012, 2013 Laboratoire de Recherche et Développement
// de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
// Families defined here come from the following papers:
//
// @InProceedings{cichon.09.depcos,
// author = {Jacek Cicho{\'n} and Adam Czubak and Andrzej Jasi{\'n}ski},
// title = {Minimal {B\"uchi} Automata for Certain Classes of {LTL} Formulas},
// booktitle = {Proceedings of the Fourth International Conference on
// Dependability of Computer Systems},
// pages = {17--24},
// year = 2009,
// publisher = {IEEE Computer Society},
// }
//
// @InProceedings{geldenhuys.06.spin,
// author = {Jaco Geldenhuys and Henri Hansen},
// title = {Larger Automata and Less Work for LTL Model Checking},
// booktitle = {Proceedings of the 13th International SPIN Workshop},
// year = {2006},
// pages = {53--70},
// series = {Lecture Notes in Computer Science},
// volume = {3925},
// publisher = {Springer}
// }
//
// @InProceedings{gastin.01.cav,
// author = {Paul Gastin and Denis Oddoux},
// title = {Fast {LTL} to {B\"u}chi Automata Translation},
// booktitle = {Proceedings of the 13th International Conference on
// Computer Aided Verification (CAV'01)},
// pages = {53--65},
// year = 2001,
// editor = {G. Berry and H. Comon and A. Finkel},
// volume = {2102},
// series = {Lecture Notes in Computer Science},
// address = {Paris, France},
// publisher = {Springer-Verlag}
// }
//
// @InProceedings{rozier.07.spin,
// author = {Kristin Y. Rozier and Moshe Y. Vardi},
// title = {LTL Satisfiability Checking},
// booktitle = {Proceedings of the 12th International SPIN Workshop on
// Model Checking of Software (SPIN'07)},
// pages = {149--167},
// year = {2007},
// volume = {4595},
// series = {Lecture Notes in Computer Science},
// publisher = {Springer-Verlag}
// }
#include "common_sys.hh"
#include
#include
#include
#include
#include "error.h"
#include
#include "common_setup.hh"
#include "common_output.hh"
#include "common_range.hh"
#include
#include
#include
#include
#include
#include
#include
#include "ltlast/allnodes.hh"
#include "ltlenv/defaultenv.hh"
#include "ltlvisit/relabel.hh"
using namespace spot;
using namespace spot::ltl;
const char argp_program_doc[] ="\
Generate temporal logic formulas from predefined scalable patterns.";
#define OPT_AND_F 1
#define OPT_AND_FG 2
#define OPT_AND_GF 3
#define OPT_CCJ_ALPHA 4
#define OPT_CCJ_BETA 5
#define OPT_CCJ_BETA_PRIME 6
#define OPT_GH_Q 7
#define OPT_GH_R 8
#define OPT_GO_THETA 9
#define OPT_OR_FG 10
#define OPT_OR_G 11
#define OPT_OR_GF 12
#define OPT_R_LEFT 13
#define OPT_R_RIGHT 14
#define OPT_RV_COUNTER 15
#define OPT_RV_COUNTER_CARRY 16
#define OPT_RV_COUNTER_CARRY_LINEAR 17
#define OPT_RV_COUNTER_LINEAR 18
#define OPT_U_LEFT 19
#define OPT_U_RIGHT 20
#define LAST_CLASS 20
const char* const class_name[LAST_CLASS] =
{
"and-f",
"and-fg",
"and-gf",
"ccj-alpha",
"ccj-beta",
"ccj-beta-prime",
"gh-q",
"gh-r",
"go-theta",
"or-fg",
"or-g",
"or-gf",
"or-r-left",
"or-r-right",
"rv-counter",
"rv-counter-carry",
"rv-counter-carry-linear",
"rv-counter-linear",
"u-left",
"u-right",
};
#define OPT_ALIAS(o) { #o, 0, 0, OPTION_ALIAS, 0, 0 }
static const argp_option options[] =
{
/**************************************************/
// Keep this alphabetically sorted (expect for aliases).
{ 0, 0, 0, 0, "Pattern selection:", 1},
// J. Geldenhuys and H. Hansen (Spin'06): Larger automata and less
// work for LTL model checking.
{ "and-f", OPT_AND_F, "RANGE", 0, "F(p1)&F(p2)&...&F(pn)", 0 },
OPT_ALIAS(gh-e),
{ "and-fg", OPT_AND_FG, "RANGE", 0, "FG(p1)&FG(p2)&...&FG(pn)", 0 },
{ "and-gf", OPT_AND_GF, "RANGE", 0, "GF(p1)&GF(p2)&...&GF(pn)", 0 },
OPT_ALIAS(ccj-phi),
OPT_ALIAS(gh-c2),
{ "ccj-alpha", OPT_CCJ_ALPHA, "RANGE", 0,
"F(p1&F(p2&F(p3&...F(pn)))) & F(q1&F(q2&F(q3&...F(qn))))", 0 },
{ "ccj-beta", OPT_CCJ_BETA, "RANGE", 0,
"F(p&X(p&X(p&...X(p)))) & F(q&X(q&X(q&...X(q))))", 0 },
{ "ccj-beta-prime", OPT_CCJ_BETA_PRIME, "RANGE", 0,
"F(p&(Xp)&(XXp)&...(X...X(p))) & F(q&(Xq)&(XXq)&...(X...X(q)))", 0 },
{ "gh-q", OPT_GH_Q, "RANGE", 0,
"(F(p1)|G(p2))&(F(p2)|G(p3))&... &(F(pn)|G(p{n+1}))", 0 },
{ "gh-r", OPT_GH_R, "RANGE", 0,
"(GF(p1)|FG(p2))&(GF(p2)|FG(p3))&... &(GF(pn)|FG(p{n+1}))", 0},
{ "go-theta", OPT_GO_THETA, "RANGE", 0,
"!((GF(p1)&GF(p2)&...&GF(pn)) -> G(q->F(r)))", 0 },
{ "or-fg", OPT_OR_FG, "RANGE", 0, "FG(p1)|FG(p2)|...|FG(pn)", 0 },
OPT_ALIAS(ccj-xi),
{ "or-g", OPT_OR_G, "RANGE", 0, "G(p1)|G(p2)|...|G(pn)", 0 },
OPT_ALIAS(gh-s),
{ "or-gf", OPT_OR_GF, "RANGE", 0, "GF(p1)|GF(p2)|...|GF(pn)", 0 },
OPT_ALIAS(gh-c1),
{ "r-left", OPT_R_LEFT, "RANGE", 0, "(((p1 R p2) R p3) ... R pn)", 0 },
{ "r-right", OPT_R_RIGHT, "RANGE", 0, "(p1 R (p2 R (... R pn)))", 0 },
{ "rv-counter", OPT_RV_COUNTER, "RANGE", 0,
"n-bit counter", 0 },
{ "rv-counter-carry", OPT_RV_COUNTER_CARRY, "RANGE", 0,
"n-bit counter w/ carry", 0 },
{ "rv-counter-carry-linear", OPT_RV_COUNTER_CARRY_LINEAR, "RANGE", 0,
"n-bit counter w/ carry (linear size)", 0 },
{ "rv-counter-linear", OPT_RV_COUNTER_LINEAR, "RANGE", 0,
"n-bit counter (linear size)", 0 },
{ "u-left", OPT_U_LEFT, "RANGE", 0, "(((p1 U p2) U p3) ... U pn)", 0 },
OPT_ALIAS(gh-u),
{ "u-right", OPT_U_RIGHT, "RANGE", 0, "(p1 U (p2 U (... U pn)))", 0 },
OPT_ALIAS(gh-u2),
OPT_ALIAS(go-phi),
RANGE_DOC,
/**************************************************/
{ 0, 0, 0, 0, "Output options:", -20 },
{ 0, 0, 0, 0, "The FORMAT string passed to --format may use "\
"the following interpreted sequences:", -19 },
{ "%f", 0, 0, OPTION_DOC | OPTION_NO_USAGE,
"the formula (in the selected syntax)", 0 },
{ "%F", 0, 0, OPTION_DOC | OPTION_NO_USAGE,
"the name of the pattern", 0 },
{ "%L", 0, 0, OPTION_DOC | OPTION_NO_USAGE,
"the argument of the pattern", 0 },
{ "%%", 0, 0, OPTION_DOC | OPTION_NO_USAGE,
"a single %", 0 },
{ 0, 0, 0, 0, "Miscellaneous options:", -1 },
{ 0, 0, 0, 0, 0, 0 }
};
struct job
{
int pattern;
struct range range;
};
typedef std::vector jobs_t;
static jobs_t jobs;
const struct argp_child children[] =
{
{ &output_argp, 0, 0, -20 },
{ &misc_argp, 0, 0, -1 },
{ 0, 0, 0, 0 }
};
static void
enqueue_job(int pattern, const char* range_str)
{
job j;
j.pattern = pattern;
j.range = parse_range(range_str);
jobs.push_back(j);
}
static int
parse_opt(int key, char* arg, struct argp_state*)
{
// This switch is alphabetically-ordered.
switch (key)
{
case OPT_AND_F:
case OPT_AND_FG:
case OPT_AND_GF:
case OPT_CCJ_ALPHA:
case OPT_CCJ_BETA:
case OPT_CCJ_BETA_PRIME:
case OPT_GH_Q:
case OPT_GH_R:
case OPT_GO_THETA:
case OPT_OR_FG:
case OPT_OR_G:
case OPT_OR_GF:
case OPT_R_LEFT:
case OPT_R_RIGHT:
case OPT_RV_COUNTER:
case OPT_RV_COUNTER_CARRY:
case OPT_RV_COUNTER_CARRY_LINEAR:
case OPT_RV_COUNTER_LINEAR:
case OPT_U_LEFT:
case OPT_U_RIGHT:
enqueue_job(key, arg);
break;
default:
return ARGP_ERR_UNKNOWN;
}
return 0;
}
environment& env(default_environment::instance());
#define G_(x) spot::ltl::unop::instance(spot::ltl::unop::G, (x))
#define F_(x) spot::ltl::unop::instance(spot::ltl::unop::F, (x))
#define X_(x) spot::ltl::unop::instance(spot::ltl::unop::X, (x))
#define Not_(x) spot::ltl::unop::instance(spot::ltl::unop::Not, (x))
#define Implies_(x, y) \
spot::ltl::binop::instance(spot::ltl::binop::Implies, (x), (y))
#define Equiv_(x, y) \
spot::ltl::binop::instance(spot::ltl::binop::Equiv, (x), (y))
#define And_(x, y) \
spot::ltl::multop::instance(spot::ltl::multop::And, (x), (y))
#define Or_(x, y) \
spot::ltl::multop::instance(spot::ltl::multop::Or, (x), (y))
#define U_(x, y) \
spot::ltl::binop::instance(spot::ltl::binop::U, (x), (y))
// F(p_1 & F(p_2 & F(p_3 & ... F(p_n))))
static const formula*
E_n(std::string name, int n)
{
if (n <= 0)
return constant::true_instance();
const formula* result = 0;
for (; n > 0; --n)
{
std::ostringstream p;
p << name << n;
const formula* f = env.require(p.str());
if (result)
result = And_(f, result);
else
result = f;
result = F_(result);
}
return result;
}
// p & X(p & X(p & ... X(p)))
static const formula*
phi_n(std::string name, int n)
{
if (n <= 0)
return constant::true_instance();
const formula* result = 0;
const formula* p = env.require(name);
for (; n > 0; --n)
{
if (result)
result = And_(p->clone(), X_(result));
else
result = p;
}
return result;
}
const formula* N_n(std::string name, int n)
{
return unop::instance(unop::F, phi_n(name, n));
}
// p & X(p) & XX(p) & XXX(p) & ... X^n(p)
static const formula*
phi_prime_n(std::string name, int n)
{
if (n <= 0)
return constant::true_instance();
const formula* result = 0;
const formula* p = env.require(name);
for (; n > 0; --n)
{
if (result)
{
p = X_(p->clone());
result = And_(result, p);
}
else
{
result = p;
}
}
return result;
}
static const formula*
N_prime_n(std::string name, int n)
{
return F_(phi_prime_n(name, n));
}
// GF(p_1) & GF(p_2) & ... & GF(p_n) if conj == true
// GF(p_1) | GF(p_2) | ... | GF(p_n) if conj == false
static const formula*
GF_n(std::string name, int n, bool conj = true)
{
if (n <= 0)
return conj ? constant::true_instance() : constant::false_instance();
const formula* result = 0;
multop::type op = conj ? multop::And : multop::Or;
for (int i = 1; i <= n; ++i)
{
std::ostringstream p;
p << name << i;
const formula* f = G_(F_(env.require(p.str())));
if (result)
result = multop::instance(op, f, result);
else
result = f;
}
return result;
}
// FG(p_1) | FG(p_2) | ... | FG(p_n) if conj == false
// FG(p_1) & FG(p_2) & ... & FG(p_n) if conj == true
static const formula*
FG_n(std::string name, int n, bool conj = false)
{
if (n <= 0)
return conj ? constant::true_instance() : constant::false_instance();
const formula* result = 0;
multop::type op = conj ? multop::And : multop::Or;
for (int i = 1; i <= n; ++i)
{
std::ostringstream p;
p << name << i;
const formula* f = F_(G_(env.require(p.str())));
if (result)
result = multop::instance(op, f, result);
else
result = f;
}
return result;
}
// (((p1 OP p2) OP p3)...OP pn) if right_assoc == false
// (p1 OP (p2 OP (p3 OP (... pn) if right_assoc == true
static const formula*
bin_n(std::string name, int n,
binop::type op, bool right_assoc = false)
{
if (n <= 0)
n = 1;
const formula* result = 0;
for (int i = 1; i <= n; ++i)
{
std::ostringstream p;
p << name << (right_assoc ? (n + 1 - i) : i);
const formula* f = env.require(p.str());
if (!result)
result = f;
else if (right_assoc)
result = binop::instance(op, f, result);
else
result = binop::instance(op, result, f);
}
return result;
}
// (GF(p1)|FG(p2))&(GF(p2)|FG(p3))&...&(GF(pn)|FG(p{n+1}))"
static const formula*
R_n(std::string name, int n)
{
if (n <= 0)
return constant::true_instance();
const formula* pi;
{
std::ostringstream p;
p << name << 1;
pi = env.require(p.str());
}
const formula* result = 0;
for (int i = 1; i <= n; ++i)
{
const formula* gf = G_(F_(pi));
std::ostringstream p;
p << name << i + 1;
pi = env.require(p.str());
const formula* fg = F_(G_(pi->clone()));
const formula* f = Or_(gf, fg);
if (result)
result = And_(f, result);
else
result = f;
}
pi->destroy();
return result;
}
// (F(p1)|G(p2))&(F(p2)|G(p3))&...&(F(pn)|G(p{n+1}))"
static const formula*
Q_n(std::string name, int n)
{
if (n <= 0)
return constant::true_instance();
const formula* pi;
{
std::ostringstream p;
p << name << 1;
pi = env.require(p.str());
}
const formula* result = 0;
for (int i = 1; i <= n; ++i)
{
const formula* f = F_(pi);
std::ostringstream p;
p << name << i + 1;
pi = env.require(p.str());
const formula* g = G_(pi->clone());
f = Or_(f, g);
if (result)
result = And_(f, result);
else
result = f;
}
pi->destroy();
return result;
}
// OP(p1) | OP(p2) | ... | OP(Pn) if conj == false
// OP(p1) & OP(p2) & ... & OP(Pn) if conj == true
static const formula*
combunop_n(std::string name, int n,
unop::type op, bool conj = false)
{
if (n <= 0)
return conj ? constant::true_instance() : constant::false_instance();
const formula* result = 0;
multop::type cop = conj ? multop::And : multop::Or;
for (int i = 1; i <= n; ++i)
{
std::ostringstream p;
p << name << i;
const formula* f = unop::instance(op, env.require(p.str()));
if (result)
result = multop::instance(cop, f, result);
else
result = f;
}
return result;
}
// !((GF(p1)&GF(p2)&...&GF(pn))->G(q -> F(r)))
// From "Fast LTL to Büchi Automata Translation" [gastin.01.cav]
static const formula*
fair_response(std::string p, std::string q, std::string r, int n)
{
const formula* fair = GF_n(p, n);
const formula* resp = G_(Implies_(env.require(q), F_(env.require(r))));
return Not_(Implies_(fair, resp));
}
// Builds X(X(...X(p))) with n occurrences of X.
static const formula*
X_n(const formula* p, int n)
{
assert(n >= 0);
const formula* res = p;
while (n--)
res = X_(res);
return res;
}
// Based on LTLcounter.pl from Kristin Rozier.
// http://shemesh.larc.nasa.gov/people/kyr/benchmarking_scripts/
static const formula*
ltl_counter(std::string bit, std::string marker, int n, bool linear)
{
const formula* b = env.require(bit);
const formula* neg_b = Not_(b);
const formula* m = env.require(marker);
const formula* neg_m = Not_(m); // to destroy
multop::vec* res = new multop::vec(4);
// The marker starts with "1", followed by n-1 "0", then "1" again,
// n-1 "0", etc.
if (!linear)
{
// G(m -> X(!m)&XX(!m)&XXX(m)) [if n = 3]
multop::vec* v = new multop::vec(n);
for (int i = 0; i + 1 < n; ++i)
(*v)[i] = X_n(neg_m->clone(), i + 1);
(*v)[n - 1] = X_n(m->clone(), n);
(*res)[0] = And_(m->clone(),
G_(Implies_(m->clone(),
multop::instance(multop::And, v))));
}
else
{
// G(m -> X(!m & X(!m X(m)))) [if n = 3]
const formula* p = m->clone();
for (int i = n - 1; i > 0; --i)
p = And_(neg_m->clone(), X_(p));
(*res)[0] = And_(m->clone(),
G_(Implies_(m->clone(), X_(p))));
}
// All bits are initially zero.
if (!linear)
{
// !b & X(!b) & XX(!b) [if n = 3]
multop::vec* v2 = new multop::vec(n);
for (int i = 0; i < n; ++i)
(*v2)[i] = X_n(neg_b->clone(), i);
(*res)[1] = multop::instance(multop::And, v2);
}
else
{
// !b & X(!b & X(!b)) [if n = 3]
const formula* p = neg_b->clone();
for (int i = n - 1; i > 0; --i)
p = And_(neg_b->clone(), X_(p));
(*res)[1] = p;
}
#define AndX_(x, y) (linear ? X_(And_((x), (y))) : And_(X_(x), X_(y)))
// If the least significant bit is 0, it will be 1 at the next time,
// and other bits stay the same.
const formula* Xnm1_b = X_n(b->clone(), n - 1);
const formula* Xn_b = X_(Xnm1_b); // to destroy
(*res)[2] =
G_(Implies_(And_(m->clone(), neg_b->clone()),
AndX_(Xnm1_b->clone(), U_(And_(Not_(m->clone()),
Equiv_(b->clone(),
Xn_b->clone())),
m->clone()))));
// From the least significant bit to the first 0, all the bits
// are flipped on the next value. Remaining bits are identical.
const formula* Xnm1_negb = X_n(neg_b, n - 1);
const formula* Xn_negb = X_(Xnm1_negb); // to destroy
(*res)[3] =
G_(Implies_(And_(m->clone(), b->clone()),
AndX_(Xnm1_negb->clone(),
U_(And_(And_(b->clone(), neg_m->clone()),
Xn_negb->clone()),
Or_(m->clone(),
And_(And_(neg_m->clone(),
neg_b->clone()),
AndX_(Xnm1_b->clone(),
U_(And_(neg_m->clone(),
Equiv_(b->clone(),
Xn_b->clone())),
m->clone()))))))));
neg_m->destroy();
Xn_b->destroy();
Xn_negb->destroy();
return multop::instance(multop::And, res);
}
static const formula*
ltl_counter_carry(std::string bit, std::string marker,
std::string carry, int n, bool linear)
{
const formula* b = env.require(bit);
const formula* neg_b = Not_(b);
const formula* m = env.require(marker);
const formula* neg_m = Not_(m); // to destroy
const formula* c = env.require(carry);
const formula* neg_c = Not_(c); // to destroy
multop::vec* res = new multop::vec(6);
// The marker starts with "1", followed by n-1 "0", then "1" again,
// n-1 "0", etc.
if (!linear)
{
// G(m -> X(!m)&XX(!m)&XXX(m)) [if n = 3]
multop::vec* v = new multop::vec(n);
for (int i = 0; i + 1 < n; ++i)
(*v)[i] = X_n(neg_m->clone(), i + 1);
(*v)[n - 1] = X_n(m->clone(), n);
(*res)[0] = And_(m->clone(),
G_(Implies_(m->clone(),
multop::instance(multop::And, v))));
}
else
{
// G(m -> X(!m & X(!m X(m)))) [if n = 3]
const formula* p = m->clone();
for (int i = n - 1; i > 0; --i)
p = And_(neg_m->clone(), X_(p));
(*res)[0] = And_(m->clone(),
G_(Implies_(m->clone(), X_(p))));
}
// All bits are initially zero.
if (!linear)
{
// !b & X(!b) & XX(!b) [if n = 3]
multop::vec* v2 = new multop::vec(n);
for (int i = 0; i < n; ++i)
(*v2)[i] = X_n(neg_b->clone(), i);
(*res)[1] = multop::instance(multop::And, v2);
}
else
{
// !b & X(!b & X(!b)) [if n = 3]
const formula* p = neg_b->clone();
for (int i = n - 1; i > 0; --i)
p = And_(neg_b->clone(), X_(p));
(*res)[1] = p;
}
const formula* Xn_b = X_n(b->clone(), n); // to destroy
const formula* Xn_negb = X_n(neg_b, n); // to destroy
// If m is 1 and b is 0 then c is 0 and n steps later b is 1.
(*res)[2] = G_(Implies_(And_(m->clone(), neg_b->clone()),
And_(neg_c->clone(), Xn_b->clone())));
// If m is 1 and b is 1 then c is 1 and n steps later b is 0.
(*res)[3] = G_(Implies_(And_(m->clone(), b->clone()),
And_(c->clone(), Xn_negb->clone())));
if (!linear)
{
// If there's no carry, then all of the bits stay the same n steps later.
(*res)[4] = G_(Implies_(And_(neg_c->clone(), X_(neg_m->clone())),
And_(X_(Not_(c->clone())),
Equiv_(X_(b->clone()),
X_(Xn_b->clone())))));
// If there's a carry, then add one: flip the bits of b and
// adjust the carry.
(*res)[5] = G_(Implies_(c->clone(),
And_(Implies_(X_(neg_b->clone()),
And_(X_(neg_c->clone()),
X_(Xn_b->clone()))),
Implies_(X_(b->clone()),
And_(X_(c->clone()),
X_(Xn_negb->clone()))))));
}
else
{
// If there's no carry, then all of the bits stay the same n steps later.
(*res)[4] = G_(Implies_(And_(neg_c->clone(), X_(neg_m->clone())),
X_(And_(Not_(c->clone()),
Equiv_(b->clone(),
Xn_b->clone())))));
// If there's a carry, then add one: flip the bits of b and
// adjust the carry.
(*res)[5] = G_(Implies_(c->clone(),
X_(And_(Implies_(neg_b->clone(),
And_(neg_c->clone(),
Xn_b->clone())),
Implies_(b->clone(),
And_(c->clone(),
Xn_negb->clone()))))));
}
neg_m->destroy();
neg_c->destroy();
Xn_b->destroy();
Xn_negb->destroy();
return multop::instance(multop::And, res);
}
static void
output_pattern(int pattern, int n)
{
const formula* f = 0;
switch (pattern)
{
// Keep this alphabetically-ordered!
case OPT_AND_F:
f = combunop_n("p", n, unop::F, true);
break;
case OPT_AND_FG:
f = FG_n("p", n, true);
break;
case OPT_AND_GF:
f = GF_n("p", n, true);
break;
case OPT_CCJ_ALPHA:
f = multop::instance(multop::And, E_n("p", n), E_n("q", n));
break;
case OPT_CCJ_BETA:
f = multop::instance(multop::And, N_n("p", n), N_n("q", n));
break;
case OPT_CCJ_BETA_PRIME:
f = multop::instance(multop::And, N_prime_n("p", n), N_prime_n("q", n));
break;
case OPT_GH_Q:
f = Q_n("p", n);
break;
case OPT_GH_R:
f = R_n("p", n);
break;
case OPT_GO_THETA:
f = fair_response("p", "q", "r", n);
break;
case OPT_OR_FG:
f = FG_n("p", n, false);
break;
case OPT_OR_G:
f = combunop_n("p", n, unop::G, false);
break;
case OPT_OR_GF:
f = GF_n("p", n, false);
break;
case OPT_R_LEFT:
f = bin_n("p", n, binop::R, false);
break;
case OPT_R_RIGHT:
f = bin_n("p", n, binop::R, true);
break;
case OPT_RV_COUNTER_CARRY:
f = ltl_counter_carry("b", "m", "c", n, false);
break;
case OPT_RV_COUNTER_CARRY_LINEAR:
f = ltl_counter_carry("b", "m", "c", n, true);
break;
case OPT_RV_COUNTER:
f = ltl_counter("b", "m", n, false);
break;
case OPT_RV_COUNTER_LINEAR:
f = ltl_counter("b", "m", n, true);
break;
case OPT_U_LEFT:
f = bin_n("p", n, binop::U, false);
break;
case OPT_U_RIGHT:
f = bin_n("p", n, binop::U, true);
break;
default:
error(100, 0, "internal error: pattern not implemented");
}
// Make sure we use only "p42"-style of atomic propositions
// in lbt's output.
if (output_format == lbt_output && !f->has_lbt_atomic_props())
{
const spot::ltl::formula* r = spot::ltl::relabel(f, spot::ltl::Pnn);
f->destroy();
f = r;
}
output_formula_checked(f, class_name[pattern - 1], n);
f->destroy();
}
static void
run_jobs()
{
for (auto& j: jobs)
{
int inc = (j.range.max < j.range.min) ? -1 : 1;
int n = j.range.min;
for (;;)
{
output_pattern(j.pattern, n);
if (n == j.range.max)
break;
n += inc;
}
}
}
int
main(int argc, char** argv)
{
setup(argv);
const argp ap = { options, parse_opt, 0, argp_program_doc,
children, 0, 0 };
if (int err = argp_parse(&ap, argc, argv, ARGP_NO_HELP, 0, 0))
exit(err);
if (jobs.empty())
error(1, 0, "Nothing to do. Try '%s --help' for more information.",
program_name);
run_jobs();
return 0;
}