// -*- coding: utf-8 -*- // Copyright (C) 2012, 2013 Laboratoire de Recherche et Développement // de l'Epita (LRDE). // // This file is part of Spot, a model checking library. // // Spot is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // // Spot is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . #include "common_sys.hh" #include #include #include #include #include #include #include #include #include #include #include "error.h" #include "gethrxtime.h" #include "common_setup.hh" #include "common_cout.hh" #include "common_finput.hh" #include "neverparse/public.hh" #include "ltlast/unop.hh" #include "ltlvisit/tostring.hh" #include "ltlvisit/apcollect.hh" #include "ltlvisit/lbt.hh" #include "ltlvisit/relabel.hh" #include "tgbaalgos/lbtt.hh" #include "tgba/tgbaproduct.hh" #include "tgbaalgos/gtec/gtec.hh" #include "tgbaalgos/randomgraph.hh" #include "tgbaalgos/scc.hh" #include "tgbaalgos/dotty.hh" #include "misc/formater.hh" #include "tgbaalgos/stats.hh" #include "tgbaalgos/isdet.hh" #include "misc/escape.hh" #include "misc/hash.hh" // Disable handling of timeout on systems that miss kill() or alarm(). // For instance MinGW. #if HAVE_KILL && HAVE_ALARM # define ENABLE_TIMEOUT 1 #else # define ENABLE_TIMEOUT 0 #endif const char argp_program_doc[] ="\ Call several LTL/PSL translators and cross-compare their output to detect \ bugs, or to gather statistics. The list of formulas to use should be \ supplied on standard input, or using the -f or -F options.\v\ Exit status:\n\ 0 everything went fine (timeouts are OK too)\n\ 1 some translator failed to output something we understand, or failed\n\ sanity checks (statistics were output nonetheless)\n\ 2 ltlcross aborted on error\n\ "; #define OPT_STATES 1 #define OPT_DENSITY 2 #define OPT_JSON 3 #define OPT_CSV 4 #define OPT_DUPS 5 #define OPT_NOCHECKS 6 #define OPT_STOP_ERR 7 static const argp_option options[] = { /**************************************************/ { 0, 0, 0, 0, "Specifying translator to call:", 2 }, { "translator", 't', "COMMANDFMT", 0, "register one translators to call", 0 }, { "timeout", 'T', "NUMBER", 0, "kill translators after NUMBER seconds", 0 }, /**************************************************/ { 0, 0, 0, 0, "COMMANDFMT should specify input and output arguments using the " "following character sequences:", 3 }, { "%f,%s,%l,%w", 0, 0, OPTION_DOC | OPTION_NO_USAGE, "the formula as a (quoted) string in Spot, Spin, LBT, or Wring's syntax", 0 }, { "%F,%S,%L,%W", 0, 0, OPTION_DOC | OPTION_NO_USAGE, "the formula as a file in Spot, Spin, LBT, or Wring's syntax", 0 }, { "%N,%T", 0, 0, OPTION_DOC | OPTION_NO_USAGE, "the output automaton as a Never claim, or in LBTT's format", 0 }, { 0, 0, 0, 0, "If either %l, %L, or %T are used, any input formula that does " "not use LBT-style atomic propositions (i.e. p0, p1, ...) will be " "relabeled automatically.", 0 }, /**************************************************/ { 0, 0, 0, 0, "ltlcross behavior:", 4 }, { "allow-dups", OPT_DUPS, 0, 0, "translate duplicate formulas in input", 0 }, { "no-checks", OPT_NOCHECKS, 0, 0, "do not perform any sanity checks (negated formulas " "will not be translated)", 0 }, { "stop-on-error", OPT_STOP_ERR, 0, 0, "stop on first execution error or failure to pass" " sanity checks (timeouts are OK)", 0 }, /**************************************************/ { 0, 0, 0, 0, "State-space generation:", 5 }, { "states", OPT_STATES, "INT", 0, "number of the states in the state-spaces (200 by default)", 0 }, { "density", OPT_DENSITY, "FLOAT", 0, "probability, between 0.0 and 1.0, to add a transition between " "two states (0.1 by default)", 0 }, /**************************************************/ { 0, 0, 0, 0, "Statistics output:", 6 }, { "json", OPT_JSON, "FILENAME", OPTION_ARG_OPTIONAL, "output statistics as JSON in FILENAME or on standard output", 0 }, { "csv", OPT_CSV, "FILENAME", OPTION_ARG_OPTIONAL, "output statistics as CSV in FILENAME or on standard output", 0 }, /**************************************************/ { 0, 0, 0, 0, "Miscellaneous options:", -1 }, { 0, 0, 0, 0, 0, 0 } }; const struct argp_child children[] = { { &finput_argp, 0, 0, 1 }, { &misc_argp, 0, 0, -1 }, { 0, 0, 0, 0 } }; unsigned states = 200; float density = 0.1; unsigned timeout = 0; const char* json_output = 0; const char* csv_output = 0; bool want_stats = false; bool allow_dups = false; bool no_checks = false; bool stop_on_error = false; std::vector translators; bool global_error_flag = false; static std::ostream& global_error() { global_error_flag = true; return std::cerr; } struct statistics { bool ok; unsigned states; unsigned edges; unsigned transitions; unsigned acc; unsigned scc; unsigned nondetstates; bool nondeterministic; double time; unsigned product_states; unsigned product_transitions; unsigned product_scc; static void fields(std::ostream& os) { os << (" \"states\"," " \"edges\"," " \"transitions\"," " \"acc\"," " \"scc\"," " \"nondetstates\"," " \"nondeterministic\"," " \"time\"," " \"product_states\"," " \"product_transitions\"," " \"product_scc\""); } void to_csv(std::ostream& os) { os << states << ", " << edges << ", " << transitions << ", " << acc << ", " << scc << ", " << nondetstates << ", " << nondeterministic << ", " << time << ", " << product_states << ", " << product_transitions << ", " << product_scc; } }; typedef std::vector statistics_formula; typedef std::vector statistics_vector; statistics_vector vstats; std::vector formulas; // Cleanup temporary files. std::list toclean; void cleanup() { for (std::list::const_iterator i = toclean.begin(); i != toclean.end(); ++i) unlink(i->c_str()); toclean.clear(); } static int to_int(const char* s) { char* endptr; int res = strtol(s, &endptr, 10); if (*endptr) error(2, 0, "failed to parse '%s' as an integer.", s); return res; } static int to_pos_int(const char* s) { int res = to_int(s); if (res < 0) error(2, 0, "%d is not positive", res); return res; } static float to_float(const char* s) { char* endptr; // Do not use strtof(), it does not exist on Solaris 9. float res = strtod(s, &endptr); if (*endptr) error(2, 0, "failed to parse '%s' as a float.", s); return res; } static float to_probability(const char* s) { float res = to_float(s); if (res < 0.0 || res > 1.0) error(2, 0, "%f is not between 0 and 1.", res); return res; } static int parse_opt(int key, char* arg, struct argp_state*) { // This switch is alphabetically-ordered. switch (key) { case 't': case ARGP_KEY_ARG: translators.push_back(arg); break; case 'T': timeout = to_pos_int(arg); #if !ENABLE_TIMEOUT std::cerr << "warning: setting a timeout is not supported " << "on your platform" << std::endl; #endif break; case OPT_CSV: want_stats = true; csv_output = arg ? arg : "-"; break; case OPT_DENSITY: density = to_probability(arg); break; case OPT_DUPS: allow_dups = true; break; case OPT_JSON: want_stats = true; json_output = arg ? arg : "-"; break; case OPT_NOCHECKS: no_checks = true; break; case OPT_STATES: states = to_pos_int(arg); break; case OPT_STOP_ERR: stop_on_error = true; break; default: return ARGP_ERR_UNKNOWN; } return 0; } static int create_tmpfile(char c, unsigned int n, std::string& name) { char tmpname[30]; snprintf(tmpname, sizeof tmpname, "lck-%c%u-XXXXXX", c, n); int fd = mkstemp(tmpname); if (fd == -1) error(2, errno, "failed to create a temporary file"); name = tmpname; return fd; } static volatile bool timed_out = false; #if ENABLE_TIMEOUT static volatile int alarm_on = 0; static int child_pid = -1; static void sig_handler(int sig) { if (child_pid == 0) error(2, 0, "child received signal %d before starting", sig); if (sig == SIGALRM && alarm_on) { timed_out = true; if (--alarm_on) { // Send SIGTERM to children. kill(-child_pid, SIGTERM); // Try again later if it didn't work. (alarm() will be reset // if it did work and the call to wait() returns) alarm(2); } else { // After a few gentle tries, really kill that child. kill(-child_pid, SIGKILL); } } else { // forward signal kill(-child_pid, sig); // cleanup files cleanup(); // and die verbosely error(2, 0, "received signal %d", sig); } } static void setup_sig_handler() { struct sigaction sa; sa.sa_handler = sig_handler; sigemptyset(&sa.sa_mask); sa.sa_flags = SA_RESTART; // So that wait() doesn't get aborted by SIGALRM. sigaction(SIGALRM, &sa, 0); // Catch termination signals, so we can kill the subprocess. sigaction(SIGHUP, &sa, 0); sigaction(SIGINT, &sa, 0); sigaction(SIGQUIT, &sa, 0); sigaction(SIGTERM, &sa, 0); } static int exec_with_timeout(const char* cmd) { int status; timed_out = false; child_pid = fork(); if (child_pid == -1) error(2, errno, "failed to fork()"); if (child_pid == 0) { setpgid(0, 0); execlp("sh", "sh", "-c", cmd, (char*)0); error(2, errno, "failed to run 'sh'"); // never reached return -1; } else { alarm(timeout); // Upon SIGALRM, the child will receive up to 3 // signals: SIGTERM, SIGTERM, SIGKILL. alarm_on = 3; int w = waitpid(child_pid, &status, 0); alarm_on = 0; if (w == -1) error(2, errno, "error during wait()"); alarm(0); } return status; } #else // !ENABLE_TIMEOUT #define exec_with_timeout(cmd) system(cmd) #define setup_sig_handler() while (0); #endif // !ENABLE_TIMEOUT namespace { struct quoted_string: public spot::printable_value { using spot::printable_value::operator=; void print(std::ostream& os, const char* pos) const { os << '\''; this->spot::printable_value::print(os, pos); os << '\''; } }; struct printable_result_filename: public spot::printable_value { unsigned translator_num; enum output_format { None, Spin, Lbtt }; mutable output_format format; void reset(unsigned n) { val_.clear(); translator_num = n; format = None; } void print(std::ostream& os, const char* pos) const { if (*pos == 'N') format = Spin; else format = Lbtt; if (!val_.empty()) error(2, 0, "you may have only one %%N or %%T specifier: %s", translators[translator_num]); close(create_tmpfile('o', translator_num, const_cast(val_))); os << '\'' << val_ << '\''; } }; class translator_runner: protected spot::formater { private: spot::bdd_dict& dict; // Round-specific variables quoted_string string_ltl_spot; quoted_string string_ltl_spin; quoted_string string_ltl_lbt; quoted_string string_ltl_wring; quoted_string filename_ltl_spot; quoted_string filename_ltl_spin; quoted_string filename_ltl_lbt; quoted_string filename_ltl_wring; // Run-specific variables printable_result_filename output; public: using spot::formater::has; translator_runner(spot::bdd_dict& dict) : dict(dict) { declare('f', &string_ltl_spot); declare('s', &string_ltl_spin); declare('l', &string_ltl_lbt); declare('w', &string_ltl_wring); declare('F', &filename_ltl_spot); declare('S', &filename_ltl_spin); declare('L', &filename_ltl_lbt); declare('W', &filename_ltl_wring); declare('N', &output); declare('T', &output); size_t s = translators.size(); assert(s); for (size_t n = 0; n < s; ++n) prime(translators[n]); } void string_to_tmp(std::string& str, unsigned n, std::string& tmpname) { int fd = create_tmpfile('i', n, tmpname); ssize_t s = str.size(); if (write(fd, str.c_str(), s) != s || write(fd, "\n", 1) != 1) error(2, errno, "failed to write into %s", tmpname.c_str()); if (close(fd)) error(2, errno, "failed to close %s", tmpname.c_str()); toclean.push_back(tmpname); } const std::string& formula() const { // Pick the most readable format we have... if (!string_ltl_spot.val().empty()) return string_ltl_spot; if (!string_ltl_spin.val().empty()) return string_ltl_spin; if (!string_ltl_wring.val().empty()) return string_ltl_wring; if (!string_ltl_lbt.val().empty()) return string_ltl_lbt; error(2, 0, "None of the translators need the input formula?"); return string_ltl_spot; } void round_formula(const spot::ltl::formula* f, unsigned serial) { if (has('f') || has('F')) string_ltl_spot = spot::ltl::to_string(f, true); if (has('s') || has('S')) string_ltl_spin = spot::ltl::to_spin_string(f, true); if (has('l') || has('L')) string_ltl_lbt = spot::ltl::to_lbt_string(f); if (has('w') || has('W')) string_ltl_wring = spot::ltl::to_wring_string(f); if (has('F')) string_to_tmp(string_ltl_spot, serial, filename_ltl_spot); if (has('S')) string_to_tmp(string_ltl_spin, serial, filename_ltl_spin); if (has('L')) string_to_tmp(string_ltl_lbt, serial, filename_ltl_lbt); if (has('W')) string_to_tmp(string_ltl_wring, serial, filename_ltl_wring); } const spot::tgba* translate(unsigned int translator_num, char l, statistics_formula* fstats) { output.reset(translator_num); std::ostringstream command; format(command, translators[translator_num]); toclean.push_back(output.val()); if (output.format == printable_result_filename::None) error(2, 0, "no output sequence used in %s", translators[translator_num]); std::string cmd = command.str(); std::cerr << "Running [" << l << translator_num << "]: " << cmd << std::endl; xtime_t before = gethrxtime(); int es = exec_with_timeout(cmd.c_str()); xtime_t after = gethrxtime(); const spot::tgba* res = 0; if (timed_out) { // This is not considered to be a global error. std::cerr << "warning: timeout during execution of command\n"; } else if (WIFSIGNALED(es)) { global_error() << "error: execution terminated by signal " << WTERMSIG(es) << ".\n"; } else if (WIFEXITED(es) && WEXITSTATUS(es) != 0) { global_error() << "error: execution returned exit code " << WEXITSTATUS(es) << ".\n"; } else { switch (output.format) { case printable_result_filename::Spin: { spot::neverclaim_parse_error_list pel; res = spot::neverclaim_parse(output, pel, &dict); if (!pel.empty()) { std::ostream& err = global_error(); err << "error: failed to parse the produced neverclaim.\n"; spot::format_neverclaim_parse_errors(err, output, pel); delete res; res = 0; } break; } case printable_result_filename::Lbtt: { std::string error; std::ifstream f(output.val().c_str()); if (!f) { global_error() << "Cannot open " << output.val() << std::endl; global_error_flag = true; } else { res = spot::lbtt_parse(f, error, &dict); if (!res) global_error() << ("error: failed to parse output in " "LBTT format: ") << error << std::endl; } break; } case printable_result_filename::None: assert(!"unreachable code"); } } // Compute statistics. if (res && want_stats) { statistics* st = &(*fstats)[translator_num]; st->ok = true; spot::tgba_sub_statistics s = sub_stats_reachable(res); st->states = s.states; st->edges = s.transitions; st->transitions = s.sub_transitions; st->acc = res->number_of_acceptance_conditions(); spot::scc_map m(res); m.build_map(); st->scc = m.scc_count(); st->nondetstates = spot::count_nondet_states(res); st->nondeterministic = st->nondetstates != 0; double prec = XTIME_PRECISION; st->time = (after - before) / prec; } return res; } }; static bool is_empty(const spot::tgba* aut) { spot::emptiness_check* ec = spot::couvreur99(aut); spot::emptiness_check_result* res = ec->check(); delete res; delete ec; return !res; } static void cross_check(const std::vector& maps, char l) { size_t m = maps.size(); std::vector res(m); unsigned verified = 0; unsigned violated = 0; for (size_t i = 0; i < m; ++i) if (spot::scc_map* m = maps[i]) { // r == true iff the automaton i is accepting. bool r = false; unsigned c = m->scc_count(); for (unsigned j = 0; (j < c) && !r; ++j) r |= m->accepting(j); res[i] = r; if (r) ++verified; else ++violated; } if (verified != 0 && violated != 0) { std::ostream& err = global_error(); err << "error: {"; bool first = true; for (size_t i = 0; i < m; ++i) if (maps[i] && res[i]) { if (first) first = false; else err << ","; err << l << i; } err << "} disagree with {"; first = true; for (size_t i = 0; i < m; ++i) if (maps[i] && !res[i]) { if (first) first = false; else err << ","; err << l << i; } err << "} when evaluating the state-space\n"; } } typedef std::set state_set; // Collect all the states of SSPACE that appear in the accepting SCCs // of PROD. static void states_in_acc(const spot::scc_map* m, const spot::tgba* sspace, state_set& s) { const spot::tgba* aut = m->get_aut(); unsigned c = m->scc_count(); for (unsigned n = 0; n < c; ++n) if (m->accepting(n)) { const std::list& l = m->states_of(n); for (std::list::const_iterator i = l.begin(); i != l.end(); ++i) { spot::state* x = aut->project_state(*i, sspace); if (!s.insert(x).second) x->destroy(); } } } static bool consistency_check(const spot::scc_map* pos, const spot::scc_map* neg, const spot::tgba* sspace) { // the states of SSPACE should appear in the accepting SCC of at // least one of POS or NEG. Maybe both. state_set s; states_in_acc(pos, sspace, s); states_in_acc(neg, sspace, s); bool res = s.size() == states; state_set::iterator it; for (it = s.begin(); it != s.end(); ++it) (*it)->destroy(); return res; } typedef Sgi::hash_set > fset_t; class processor: public job_processor { spot::bdd_dict dict; translator_runner runner; fset_t unique_set; public: processor() : runner(dict) { } ~processor() { fset_t::iterator i = unique_set.begin(); while (i != unique_set.end()) (*i++)->destroy(); } int process_formula(const spot::ltl::formula* f, const char* filename = 0, int linenum = 0) { (void) filename; (void) linenum; static unsigned round = 0; // If we need LBT atomic proposition in any of the input or // output, relabel the formula. if (!f->has_lbt_atomic_props() && (runner.has('l') || runner.has('L') || runner.has('T'))) { const spot::ltl::formula* g = spot::ltl::relabel(f, spot::ltl::Pnn); f->destroy(); f = g; } // ---------- Positive Formula ---------- runner.round_formula(f, round); // Call formula() before printing anything else, in case it // complains. std::string fstr = runner.formula(); if (filename) std::cerr << filename << ":"; if (linenum) std::cerr << linenum << ":"; if (filename || linenum) std::cerr << " "; std::cerr << fstr << "\n"; // Make sure we do not translate the same formula twice. if (!allow_dups) { if (unique_set.insert(f).second) { f->clone(); } else { std::cerr << ("warning: This formula or its negation has already" " been checked.\n Use --allow-dups if it " "should not be ignored.\n") << std::endl; f->destroy(); return 0; } } size_t m = translators.size(); std::vector pos(m); std::vector neg(m); unsigned n = vstats.size(); vstats.resize(n + (no_checks ? 1 : 2)); statistics_formula* pstats = &vstats[n]; statistics_formula* nstats = 0; pstats->resize(m); formulas.push_back(fstr); for (size_t n = 0; n < m; ++n) pos[n] = runner.translate(n, 'P', pstats); // ---------- Negative Formula ---------- // The negative formula is only needed when checks are // activated. if (!no_checks) { nstats = &vstats[n + 1]; nstats->resize(m); const spot::ltl::formula* nf = spot::ltl::unop::instance(spot::ltl::unop::Not, f->clone()); if (!allow_dups) { bool res = unique_set.insert(nf->clone()).second; // It is not possible to discover that nf has already been // translated, otherwise that would mean that f had been // translated too and we would have caught it before. assert(res); (void) res; } runner.round_formula(nf, round); formulas.push_back(runner.formula()); for (size_t n = 0; n < m; ++n) neg[n] = runner.translate(n, 'N', nstats); nf->destroy(); } f->destroy(); cleanup(); ++round; if (!no_checks) { std::cerr << "Performing sanity checks and gathering statistics..." << std::endl; // intersection test for (size_t i = 0; i < m; ++i) if (pos[i]) for (size_t j = 0; j < m; ++j) if (neg[j]) { spot::tgba_product* prod = new spot::tgba_product(pos[i], neg[j]); if (!is_empty(prod)) global_error() << "error: P" << i << "*N" << j << " is nonempty\n"; delete prod; } } else { std::cerr << "Gathering statistics..." << std::endl; } // build products with a random state-space. spot::ltl::atomic_prop_set* ap = spot::ltl::atomic_prop_collect(f); spot::tgba* statespace = spot::random_graph(states, density, ap, &dict); delete ap; std::vector pos_prod(m); std::vector neg_prod(m); std::vector pos_map(m); std::vector neg_map(m); for (size_t i = 0; i < m; ++i) if (pos[i]) { spot::tgba* p = new spot::tgba_product(pos[i], statespace); pos_prod[i] = p; spot::scc_map* sm = new spot::scc_map(p); sm->build_map(); pos_map[i] = sm; // Statistics if (want_stats) { (*pstats)[i].product_scc = sm->scc_count(); spot::tgba_statistics s = spot::stats_reachable(p); (*pstats)[i].product_states = s.states; (*pstats)[i].product_transitions = s.transitions; } } if (!no_checks) for (size_t i = 0; i < m; ++i) if (neg[i]) { spot::tgba* p = new spot::tgba_product(neg[i], statespace); neg_prod[i] = p; spot::scc_map* sm = new spot::scc_map(p); sm->build_map(); neg_map[i] = sm; // Statistics if (want_stats) { (*nstats)[i].product_scc = sm->scc_count(); spot::tgba_statistics s = spot::stats_reachable(p); (*nstats)[i].product_states = s.states; (*nstats)[i].product_transitions = s.transitions; } } if (!no_checks) { // cross-comparison test cross_check(pos_map, 'P'); cross_check(neg_map, 'N'); // consistency check for (size_t i = 0; i < m; ++i) if (pos_map[i] && neg_map[i] && !(consistency_check(pos_map[i], neg_map[i], statespace))) global_error() << "error: inconsistency between P" << i << " and N" << i << "\n"; } // Cleanup. if (!no_checks) for (size_t n = 0; n < m; ++n) { delete neg_map[n]; delete neg_prod[n]; delete neg[n]; } for (size_t n = 0; n < m; ++n) { delete pos_map[n]; delete pos_prod[n]; delete pos[n]; } delete statespace; std::cerr << std::endl; // Shall we stop processing formulas now? abort_run = global_error_flag && stop_on_error; return 0; } }; } static void print_stats_csv(const char* filename) { std::ofstream* outfile = 0; std::ostream* out; if (!strncmp(filename, "-", 2)) { out = &std::cout; } else { out = outfile = new std::ofstream(filename); if (!outfile) error(2, errno, "cannot open '%s'", filename); } unsigned ntrans = translators.size(); unsigned rounds = vstats.size(); assert(rounds == formulas.size()); *out << "\"formula\", \"tool\", "; statistics::fields(*out); *out << "\n"; for (unsigned r = 0; r < rounds; ++r) for (unsigned t = 0; t < ntrans; ++t) if (vstats[r][t].ok) { *out << "\""; spot::escape_str(*out, formulas[r]); *out << "\", \""; spot::escape_str(*out, translators[t]); *out << "\", "; vstats[r][t].to_csv(*out); *out << "\n"; } delete outfile; } static void print_stats_json(const char* filename) { std::ofstream* outfile = 0; std::ostream* out; if (!strncmp(filename, "-", 2)) { out = &std::cout; } else { out = outfile = new std::ofstream(filename); if (!outfile) error(2, errno, "cannot open '%s'", filename); } unsigned ntrans = translators.size(); unsigned rounds = vstats.size(); assert(rounds == formulas.size()); *out << "{\n \"tools\": [\n \""; spot::escape_str(*out, translators[0]); for (unsigned t = 1; t < ntrans; ++t) { *out << "\",\n \""; spot::escape_str(*out, translators[t]); } *out << "\"\n ],\n \"inputs\": [\n \""; spot::escape_str(*out, formulas[0]); for (unsigned r = 1; r < rounds; ++r) { *out << "\",\n \""; spot::escape_str(*out, formulas[r]); } *out << ("\"\n ],\n \"fields\": [\n \"input\", \"tool\","); statistics::fields(*out); *out << "\n ],\n \"results\": ["; bool notfirst = false; for (unsigned r = 0; r < rounds; ++r) for (unsigned t = 0; t < ntrans; ++t) if (vstats[r][t].ok) { if (notfirst) *out << ","; notfirst = true; *out << "\n [ " << r << ", " << t << ", "; vstats[r][t].to_csv(*out); *out << " ]"; } *out << "\n ]\n}\n"; delete outfile; } int main(int argc, char** argv) { setup(argv); const argp ap = { options, parse_opt, "[COMMANDFMT...]", argp_program_doc, children, 0, 0 }; if (int err = argp_parse(&ap, argc, argv, ARGP_NO_HELP, 0, 0)) exit(err); if (jobs.empty()) jobs.push_back(job("-", 1)); if (translators.empty()) error(2, 0, "No translator to run? Run '%s --help' for usage.", program_name); setup_sig_handler(); processor p; if (p.run()) return 2; if (formulas.empty()) { error(2, 0, "no formula to translate"); } else { if (global_error_flag) std::cerr << ("error: some error was detected during the above runs,\n" " please search for 'error:' messages in the above trace.") << std::endl; else std::cerr << "no problem detected" << std::endl; } if (json_output) print_stats_json(json_output); if (csv_output) print_stats_csv(csv_output); return global_error_flag; }