// -*- coding: utf-8 -*-
// Copyright (C) 2009, 2010, 2011, 2013 Laboratoire de Recherche et
// Développement de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
#include
#include
#include
#include "bdd.h"
#include "bddprint.hh"
#include "state.hh"
#include "tgbakvcomplement.hh"
#include "misc/hash.hh"
#include "tgbaalgos/bfssteps.hh"
#include "misc/hashfunc.hh"
#include "ltlast/formula.hh"
#include "ltlast/constant.hh"
#include "tgbaalgos/stats.hh"
namespace spot
{
namespace
{
////////////////////////////////////////
// rank
/// \brief A rank structure, one of the main structure of the algorithm.
///
/// A rank has a number (\a rank) that refers to the depth in the DAG of
/// the current word. When the rank is odd, a \a condition is associated
/// to this rank.
struct rank_t
{
mutable unsigned rank;
mutable bdd_ordered condition;
bool operator<(const rank_t& other) const
{
return rank < other.rank ||
condition.order() < other.condition.order();
}
unsigned get_rank() const
{
return rank;
}
bdd_ordered get_condition() const
{
return condition;
}
size_t hash() const
{
size_t hash = wang32_hash(rank);
if (rank & 1)
hash ^= wang32_hash(condition.order());
return hash;
}
std::string format(const tgba* a) const
{
std::ostringstream ss;
ss << "{rank: " << rank;
if (rank & 1)
{
ss << ", bdd: {" << condition.order() << ", "
<< bdd_format_accset(a->get_dict(), condition.get_bdd())
<< "} ";
}
ss << "}";
return ss.str();
}
};
// typedefs.
typedef Sgi::hash_map state_rank_map;
typedef Sgi::hash_set state_set;
////////////////////////////////////////
// state_kv_complement
/// States used by spot::tgba_kv_complement.
/// A state has a map of states associated to ranks, and a set
/// of filtered states.
/// \ingroup tgba_representation
class state_kv_complement : public state
{
public:
state_kv_complement();
state_kv_complement(state_rank_map state_map, state_set state_filter);
virtual ~state_kv_complement() {}
virtual int compare(const state* other) const;
virtual size_t hash() const;
virtual state_kv_complement* clone() const;
void add(shared_state state, const rank_t& rank);
const state_rank_map& get_state_map() const;
const state_set& get_filter_set() const;
bool accepting() const;
private:
state_rank_map state_map_;
state_set state_filter_;
};
state_kv_complement::state_kv_complement()
{
}
state_kv_complement::state_kv_complement(state_rank_map state_map,
state_set state_filter)
: state_map_(state_map), state_filter_(state_filter)
{
}
int
state_kv_complement::compare(const state* o) const
{
const state_kv_complement* other =
down_cast(o);
if (other == 0)
return 1;
if (state_map_.size() < other->state_map_.size())
return -1;
else if (state_map_.size() > other->state_map_.size())
return 1;
if (state_filter_.size() < other->state_filter_.size())
return -1;
else if (state_filter_.size() > other->state_filter_.size())
return 1;
{
state_rank_map::const_iterator i = state_map_.begin();
state_rank_map::const_iterator j = other->state_map_.begin();
while (i != state_map_.end() && j != other->state_map_.end())
{
int result = i->first->compare(j->first.get());
if (result != 0)
return result;
if (i->second < j->second)
return -1;
if (j->second < i->second)
return 1;
++i;
++j;
}
}
{
state_set::const_iterator i = state_filter_.begin();
state_set::const_iterator j = other->state_filter_.begin();
while (i != state_filter_.end() && j != other->state_filter_.end())
{
int result = (*i)->compare(j->get());
if (result != 0)
return result;
++i;
++j;
}
}
return 0;
}
size_t
state_kv_complement::hash() const
{
size_t hash = 0;
{
state_rank_map::const_iterator i = state_map_.begin();
while (i != state_map_.end())
{
hash ^= i->first->hash();
hash ^= i->second.hash();
++i;
}
}
{
state_set::const_iterator i = state_filter_.begin();
while (i != state_filter_.end())
{
hash ^= (*i)->hash();
++i;
}
}
return hash;
}
state_kv_complement*
state_kv_complement::clone() const
{
return new state_kv_complement(*this);
}
void
state_kv_complement::add(shared_state state,
const rank_t& rank)
{
state_map_[state] = rank;
}
const state_rank_map&
state_kv_complement::get_state_map() const
{
return state_map_;
}
const state_set&
state_kv_complement::get_filter_set() const
{
return state_filter_;
}
bool
state_kv_complement::accepting() const
{
return state_filter_.empty();
}
/// Successor iterators used by spot::tgba_kv_complement.
/// \ingroup tgba_representation
///
/// Since the algorithm works on-the-fly, the key components of the
/// algorithm are implemented in this class.
///
///
class tgba_kv_complement_succ_iterator: public tgba_succ_iterator
{
public:
typedef std::list bdd_list_t;
tgba_kv_complement_succ_iterator(const tgba_sgba_proxy* automaton,
bdd the_acceptance_cond,
const acc_list_t& acc_list,
const state_kv_complement* origin);
virtual ~tgba_kv_complement_succ_iterator() {};
virtual void first();
virtual void next();
virtual bool done() const;
virtual state_kv_complement* current_state() const;
virtual bdd current_condition() const;
virtual bdd current_acceptance_conditions() const;
private:
/// \brief Create the highest rank of \a origin_ as origin and
/// \a condition as successor condition.
void successor_highest_rank(bdd condition);
void get_atomics(std::set& list, bdd c);
void get_conj_list();
bool is_valid_rank() const;
bool next_valid_rank();
const tgba_sgba_proxy* automaton_;
bdd the_acceptance_cond_;
const acc_list_t& acc_list_;
const state_kv_complement* origin_;
bdd_list_t condition_list_;
bdd_list_t::const_iterator current_condition_;
state_rank_map highest_current_ranks_;
state_rank_map current_ranks_;
state_set highest_state_set_;
};
tgba_kv_complement_succ_iterator::
tgba_kv_complement_succ_iterator(const tgba_sgba_proxy* automaton,
bdd the_acceptance_cond,
const acc_list_t& acc_list,
const state_kv_complement* origin)
: automaton_(automaton), the_acceptance_cond_(the_acceptance_cond),
acc_list_(acc_list), origin_(origin)
{
get_conj_list();
}
/// Insert in \a list atomic properties of the formula \a c.
void
tgba_kv_complement_succ_iterator::get_atomics(std::set& list, bdd c)
{
bdd current = bdd_satone(c);
while (current != bddtrue && current != bddfalse)
{
list.insert(bdd_var(current));
bdd high = bdd_high(current);
if (high == bddfalse)
current = bdd_low(current);
else
current = high;
}
}
/// Create the conjunction of all the atomic properties from
/// the successors of the current state.
void
tgba_kv_complement_succ_iterator::get_conj_list()
{
std::set atomics;
condition_list_.clear();
state_rank_map sr_map = origin_->get_state_map();
// Retrieve all the atomics in acceptance conditions.
for (state_rank_map::const_iterator i = sr_map.begin();
i != sr_map.end();
++i)
{
tgba_succ_iterator* iterator = automaton_->succ_iter(i->first.get());
for (iterator->first(); !iterator->done(); iterator->next())
{
bdd c = iterator->current_condition();
get_atomics(atomics, c);
}
delete iterator;
}
// Compute the conjunction of all those atomic properties.
unsigned atomics_size = atomics.size();
assert(atomics_size < 32);
for (unsigned i = 1; i <= static_cast(1 << atomics_size); ++i)
{
bdd result = bddtrue;
unsigned position = 1;
for (std::set::const_iterator a_it = atomics.begin();
a_it != atomics.end();
++a_it, position <<= 1)
{
bdd this_atomic;
if (position & i)
this_atomic = bdd_ithvar(*a_it);
else
this_atomic = bdd_nithvar(*a_it);
result = bdd_apply(result, this_atomic, bddop_and);
}
condition_list_.push_back(result);
}
}
/// Check whether \a current_ranks_ is a valid rank.
/// For each odd rank, its condition associated must not
/// be present in its tracked state.
bool
tgba_kv_complement_succ_iterator::is_valid_rank() const
{
for (state_rank_map::const_iterator i = current_ranks_.begin();
i != current_ranks_.end();
++i)
{
if (i->second.rank & 1)
{
if ((automaton_->state_acceptance_conditions(i->first.get()) &
i->second.condition.get_bdd()) != bddfalse)
return false;
}
}
return true;
}
/// \brief Decrease \a current_ranks_ and produces a valid rank.
/// \a current_ranks_ is a map of states to a rank.
/// A rank for a state is valid if it is inferior than the rank of its
/// predecessor.
/// When the rank is odd, its has an acceptance condition associated that
/// must not be in its associated state.
/// \return false if there is not valid rank as successor.
bool tgba_kv_complement_succ_iterator::next_valid_rank()
{
state_rank_map::const_iterator i;
do
{
for (i = current_ranks_.begin(); i != current_ranks_.end(); ++i)
{
if (i->second.rank != 0)
{
if (i->second.rank & 1)
{
if (i->second.condition.order() == 0)
--i->second.rank;
else
i->second.condition =
acc_list_[i->second.condition.order() - 1];
}
else
{
--i->second.rank;
i->second.condition = acc_list_[acc_list_.size() - 1];
}
break;
}
else
{
current_ranks_[i->first] = highest_current_ranks_[i->first];
}
}
}
while ((i != current_ranks_.end()) && !is_valid_rank());
return i != current_ranks_.end();
}
/// \brief Create the highest rank of \a origin_ as origin and
/// \a condition as successor condition.
void
tgba_kv_complement_succ_iterator::successor_highest_rank(bdd condition)
{
// Highest rank for bdd.
state_rank_map sr_map = origin_->get_state_map();
highest_current_ranks_.clear();
for (state_rank_map::const_iterator i = sr_map.begin();
i != sr_map.end();
++i)
{
tgba_succ_iterator* iterator = automaton_->succ_iter(i->first.get());
for (iterator->first(); !iterator->done(); iterator->next())
{
bdd c = iterator->current_condition();
if ((c & condition) != bddfalse)
{
shared_state s(iterator->current_state(), shared_state_deleter);
if (highest_current_ranks_.find(s) != highest_current_ranks_.end())
{
if (i->second < highest_current_ranks_[s])
highest_current_ranks_[s] = i->second;
}
else
highest_current_ranks_[s] = i->second;
}
}
delete iterator;
}
// Highest $O$ set of the algorithm.
state_set s_set = origin_->get_filter_set();
highest_state_set_.clear();
for (state_set::const_iterator i = s_set.begin();
i != s_set.end();
++i)
{
tgba_succ_iterator* iterator = automaton_->succ_iter(i->get());
for (iterator->first(); !iterator->done(); iterator->next())
{
bdd c = iterator->current_condition();
if ((c & condition) != bddfalse)
{
shared_state s(iterator->current_state(), shared_state_deleter);
highest_state_set_.insert(s);
}
}
delete iterator;
}
current_ranks_ = highest_current_ranks_;
}
void
tgba_kv_complement_succ_iterator::first()
{
current_condition_ = condition_list_.begin();
if (done())
return;
successor_highest_rank(*current_condition_);
if (!is_valid_rank())
next_valid_rank();
}
void
tgba_kv_complement_succ_iterator::next()
{
if (done())
return;
if (!next_valid_rank())
{
++current_condition_;
if (!done())
{
successor_highest_rank(*current_condition_);
if (!is_valid_rank())
next_valid_rank();
}
}
}
bool
tgba_kv_complement_succ_iterator::done() const
{
return (current_condition_ == condition_list_.end());
}
state_kv_complement*
tgba_kv_complement_succ_iterator::current_state() const
{
if (done())
return 0;
// If the filter set is empty, all the states of the map
// that are associated to an even rank create the new filter set.
state_set filter;
if (origin_->get_filter_set().empty())
{
for (state_rank_map::const_iterator i = current_ranks_.begin();
i != current_ranks_.end();
++i)
if (!(i->second.rank & 1))
filter.insert(i->first);
}
else
{
// It the filter set is non-empty, we delete from this set states
// that are now associated to an odd rank.
for (state_set::const_iterator i = highest_state_set_.begin();
i != highest_state_set_.end();
++i)
{
state_rank_map::const_iterator s(current_ranks_.find(*i));
assert(s != current_ranks_.end());
if (!(s->second.get_rank() & 1))
filter.insert(*i);
}
}
return new state_kv_complement(current_ranks_, filter);
}
bdd
tgba_kv_complement_succ_iterator::current_condition() const
{
if (done())
return bddfalse;
return *current_condition_;
}
bdd
tgba_kv_complement_succ_iterator::current_acceptance_conditions() const
{
if (done())
return bddfalse;
// This algorithm doesn't generalized acceptance conditions.
if (origin_->accepting())
return the_acceptance_cond_;
else
return bddfalse;
}
} // end namespace anonymous.
/// Retrieve all the atomic acceptance conditions of the automaton.
/// They are inserted into \a acc_list_.
void
tgba_kv_complement::get_acc_list()
{
bdd c = automaton_->all_acceptance_conditions();
bdd current = bdd_satone(c);
unsigned i = 0;
while (current != bddtrue && current != bddfalse)
{
acc_list_.push_back(bdd_ordered(bdd_var(current), i));
++i;
bdd high = bdd_high(current);
if (high == bddfalse)
current = bdd_low(current);
else
current = high;
}
}
tgba_kv_complement::tgba_kv_complement(const tgba* a)
: automaton_(new tgba_sgba_proxy(a))
{
get_dict()->register_all_variables_of(automaton_, this);
int v = get_dict()
->register_acceptance_variable(ltl::constant::true_instance(), this);
the_acceptance_cond_ = bdd_ithvar(v);
{
spot::tgba_statistics a_size = spot::stats_reachable(automaton_);
nb_states_ = a_size.states;
}
get_acc_list();
}
tgba_kv_complement::~tgba_kv_complement()
{
get_dict()->unregister_all_my_variables(this);
delete automaton_;
}
state*
tgba_kv_complement::get_init_state() const
{
state_kv_complement* init = new state_kv_complement();
rank_t r = {2 * nb_states_, bdd_ordered()};
init->add(shared_state(automaton_->get_init_state(), shared_state_deleter),
r);
return init;
}
tgba_succ_iterator*
tgba_kv_complement::succ_iter(const state* local_state,
const state*,
const tgba*) const
{
const state_kv_complement* state =
down_cast(local_state);
assert(state);
return new tgba_kv_complement_succ_iterator(automaton_,
the_acceptance_cond_,
acc_list_, state);
}
bdd_dict*
tgba_kv_complement::get_dict() const
{
return automaton_->get_dict();
}
std::string
tgba_kv_complement::format_state(const state* state) const
{
const state_kv_complement* s =
down_cast(state);
assert(s);
std::ostringstream ss;
ss << "{ set: {" << std::endl;
const state_rank_map& state_map = s->get_state_map();
const state_set& state_filter = s->get_filter_set();
for (state_rank_map::const_iterator i = state_map.begin();
i != state_map.end();
++i)
{
ss << " {" << automaton_->format_state(i->first.get())
<< ", " << i->second.format(this) << "}" << std::endl;
}
ss << "} odd-less: {";
for (state_set::const_iterator i = state_filter.begin();
i != state_filter.end();
++i)
ss << " " << automaton_->format_state(i->get()) << std::endl;
ss << "} }";
return ss.str();
}
bdd
tgba_kv_complement::all_acceptance_conditions() const
{
return the_acceptance_cond_;
}
bdd
tgba_kv_complement::neg_acceptance_conditions() const
{
return !the_acceptance_cond_;
}
bdd
tgba_kv_complement::compute_support_conditions(const state* state) const
{
tgba_succ_iterator* i = succ_iter(state);
bdd result = bddtrue;
for (i->first(); !i->done(); i->next())
result |= i->current_condition();
delete i;
return result;
}
bdd
tgba_kv_complement::compute_support_variables(const state* state) const
{
tgba_succ_iterator* i = succ_iter(state);
bdd result = bddtrue;
for (i->first(); !i->done(); i->next())
result &= bdd_support(i->current_condition());
delete i;
return result;
}
} // end namespace spot.