// -*- coding: utf-8 -*-
// Copyright (C) 2012, 2013, 2014, 2015 Laboratoire de Recherche et
// Développement de l'Epita.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
#include "degen.hh"
#include "tgba/tgbagraph.hh"
#include "misc/hash.hh"
#include "misc/hashfunc.hh"
#include
#include
#include
#include
#include "tgbaalgos/sccinfo.hh"
#include "tgba/bddprint.hh"
//#define DEGEN_DEBUG
namespace spot
{
namespace
{
// A state in the degenalized automaton corresponds to a state in
// the TGBA associated to a level. The level is just an index in
// the list of acceptance sets.
typedef std::pair degen_state;
struct degen_state_hash
{
size_t
operator()(const degen_state& s) const
{
return wang32_hash(s.first ^ wang32_hash(s.second));
}
};
// Associate the degeneralized state to its number.
typedef std::unordered_map ds2num_map;
// Queue of state to be processed.
typedef std::deque queue_t;
// Acceptance set common to all outgoing transitions (of the same
// SCC -- we do not care about the other) of some state.
class outgoing_acc
{
const_tgba_digraph_ptr a_;
typedef std::tuple cache_entry;
std::vector cache_;
const scc_info* sm_;
void fill_cache(unsigned s)
{
unsigned s1 = sm_ ? sm_->scc_of(s) : 0;
acc_cond::mark_t common = a_->acc().all_sets();
acc_cond::mark_t union_ = 0U;
bool has_acc_self_loop = false;
for (auto& t: a_->out(s))
{
// Ignore transitions that leave the SCC of s.
unsigned d = t.dst;
unsigned s2 = sm_ ? sm_->scc_of(d) : 0;
if (s2 != s1)
continue;
common &= t.acc;
union_ |= t.acc;
// an accepting self-loop?
has_acc_self_loop |= (t.dst == s) && a_->acc().accepting(t.acc);
}
cache_[s] = std::make_tuple(common, union_, has_acc_self_loop);
}
public:
outgoing_acc(const const_tgba_digraph_ptr& a, const scc_info* sm):
a_(a), cache_(a->num_states()), sm_(sm)
{
unsigned n = a->num_states();
for (unsigned s = 0; s < n; ++s)
fill_cache(s);
}
// Intersection of all outgoing acceptance sets
acc_cond::mark_t common_acc(unsigned s)
{
assert(s < cache_.size());
return std::get<0>(cache_[s]);
}
// Union of all outgoing acceptance sets
acc_cond::mark_t union_acc(unsigned s)
{
assert(s < cache_.size());
return std::get<1>(cache_[s]);
}
// Has an accepting self-loop
bool has_acc_selfloop(unsigned s)
{
assert(s < cache_.size());
return std::get<2>(cache_[s]);
}
};
// Order of accepting sets (for one SCC)
class acc_order
{
std::vector order_;
acc_cond::mark_t found_;
public:
unsigned
next_level(int slevel, acc_cond::mark_t set, bool skip_levels)
{
// Update the order with any new set we discover
if (auto newsets = set - found_)
{
newsets.fill(std::back_inserter(order_));
found_ |= newsets;
}
unsigned next = slevel;
while (next < order_.size() && set.has(order_[next]))
{
++next;
if (!skip_levels)
break;
}
return next;
}
void
print(int scc)
{
std::cout << "Order_" << scc << ":\t";
for (auto i: order_)
std::cout << i << ", ";
std::cout << '\n';
}
};
// Accepting order for each SCC
class scc_orders
{
std::map orders_;
bool skip_levels_;
public:
scc_orders(bool skip_levels):
skip_levels_(skip_levels)
{
}
unsigned
next_level(int scc, int slevel, acc_cond::mark_t set)
{
return orders_[scc].next_level(slevel, set, skip_levels_);
}
void
print()
{
std::map::iterator i;
for (i = orders_.begin(); i != orders_.end(); i++)
i->second.print(i->first);
}
};
template
tgba_digraph_ptr
degeneralize_aux(const const_tgba_digraph_ptr& a, bool use_z_lvl,
bool use_cust_acc_orders, int use_lvl_cache,
bool skip_levels)
{
if (!a->acc().is_generalized_buchi())
throw std::runtime_error
("degeneralize() can only work with generalized Büchi acceptance");
bool use_scc = use_lvl_cache || use_cust_acc_orders || use_z_lvl;
bdd_dict_ptr dict = a->get_dict();
// The result automaton is an SBA.
auto res = make_tgba_digraph(dict);
res->copy_ap_of(a);
res->set_buchi();
if (want_sba)
res->prop_state_based_acc();
// Preserve determinism, weakness, and stutter-invariance
res->prop_copy(a, { false, true, true, true });
// Create an order of acceptance conditions. Each entry in this
// vector correspond to an acceptance set. Each index can
// be used as a level in degen_state to indicate the next expected
// acceptance set. Level order.size() is a special level used to
// denote accepting states.
std::vector order;
{
// FIXME: revisit this comment once everything compiles again.
//
// The order is arbitrary, but it turns out that using push_back
// instead of push_front often gives better results because
// acceptance sets at the beginning if the cycle are more often
// used in the automaton. (This surprising fact is probably
// related to the order in which we declare the BDD variables
// during the translation.)
unsigned n = a->acc().num_sets();
for (unsigned i = n; i > 0; --i)
order.push_back(i - 1);
}
// Initialize scc_orders
scc_orders orders(skip_levels);
// and vice-versa.
ds2num_map ds2num;
// This map is used to find transitions that go to the same
// destination with the same acceptance. The integer key is
// (dest*2+acc) where dest is the destination state number, and
// acc is 1 iff the transition is accepting. The source
// is always that of the current iteration.
typedef std::map tr_cache_t;
tr_cache_t tr_cache;
// Read this early, because it might create a state if the
// automaton is empty.
degen_state s(a->get_init_state_number(), 0);
// State->level cache
std::vector> lvl_cache(a->num_states());
// Compute SCCs in order to use any optimization.
scc_info* m = nullptr;
if (use_scc)
m = new scc_info(a);
// Cache for common outgoing acceptances.
outgoing_acc outgoing(a, m);
queue_t todo;
// As a heuristic for building SBA, if the initial state has at
// least one accepting self-loop, start the degeneralization on
// the accepting level.
if (want_sba && outgoing.has_acc_selfloop(s.first))
s.second = order.size();
// Otherwise, check for acceptance conditions common to all
// outgoing transitions, and assume we have already seen these and
// start on the associated level.
if (s.second == 0)
{
auto set = outgoing.common_acc(s.first);
if (use_cust_acc_orders)
s.second = orders.next_level(m->initial(), s.second, set);
else
while (s.second < order.size()
&& set.has(order[s.second]))
{
++s.second;
if (!skip_levels)
break;
}
// There is not accepting level for TBA, let reuse level 0.
if (!want_sba && s.second == order.size())
s.second = 0;
}
ds2num[s] = res->new_state();
todo.push_back(s);
// If use_lvl_cache is on insert initial state to level cache
// Level cache stores first encountered level for each state.
// When entering an SCC first the lvl_cache is checked.
// If such state exists level from chache is used.
// If not, a new level (starting with 0) is computed.
if (use_lvl_cache)
lvl_cache[s.first] = std::make_pair(s.second, true);
while (!todo.empty())
{
s = todo.front();
todo.pop_front();
int src = ds2num[s];
unsigned slevel = s.second;
// If we have a state on the last level, it should be accepting.
bool is_acc = slevel == order.size();
// On the accepting level, start again from level 0.
if (want_sba && is_acc)
slevel = 0;
// Check SCC for state s
int s_scc = -1;
if (use_scc)
s_scc = m->scc_of(s.first);
for (auto& i: a->out(s.first))
{
degen_state d(i.dst, 0);
// Check whether the target SCC is accepting
bool is_scc_acc;
int scc;
if (use_scc)
{
scc = m->scc_of(d.first);
is_scc_acc = m->is_accepting_scc(scc);
}
else
{
// If we have no SCC information, treat all SCCs as
// accepting.
scc = -1;
is_scc_acc = true;
}
// The old level is slevel. What should be the new one?
auto acc = i.acc;
auto otheracc = outgoing.common_acc(d.first);
if (want_sba && is_acc)
{
// Ignore the last expected acceptance set (the value of
// prev below) if it is common to all other outgoing
// transitions (of the current state) AND if it is not
// used by any outgoing transition of the destination
// state.
//
// 1) It's correct to do that, because this acceptance
// set is common to other outgoing transitions.
// Therefore if we make a cycle to this state we
// will eventually see that acceptance set thanks
// to the "pulling" of the common acceptance sets
// of the destination state (d.first).
//
// 2) It's also desirable because it makes the
// degeneralization idempotent (up to a renaming
// of states). Consider the following automaton
// where 1 is initial and => marks accepting
// transitions: 1=>1, 1=>2, 2->2, 2->1. This is
// already an SBA, with 1 as accepting state.
// However if you try degeralize it without
// ignoring *prev, you'll get two copies of state
// 2, depending on whether we reach it using 1=>2
// or from 2->2. If this example was not clear,
// play with the "degenid.test" test case.
//
// 3) Ignoring all common acceptance sets would also
// be correct, but it would make the
// degeneralization produce larger automata in some
// cases. The current condition to ignore only one
// acceptance set if is this not used by the next
// state is a heuristic that is compatible with
// point 2) above while not causing more states to
// be generated in our benchmark of 188 formulae
// from the literature.
if (!order.empty())
{
unsigned prev = order.size() - 1;
auto common = outgoing.common_acc(s.first);
if (common.has(order[prev]))
{
auto u = outgoing.union_acc(d.first);
if (!u.has(order[prev]))
acc -= a->acc().mark(order[prev]);
}
}
}
// A transition in the SLEVEL acceptance set should
// be directed to the next acceptance set. If the
// current transition is also in the next acceptance
// set, then go to the one after, etc.
//
// See Denis Oddoux's PhD thesis for a nice
// explanation (in French).
// @PhDThesis{ oddoux.03.phd,
// author = {Denis Oddoux},
// title = {Utilisation des automates alternants pour un
// model-checking efficace des logiques
// temporelles lin{\'e}aires.},
// school = {Universit{\'e}e Paris 7},
// year = {2003},
// address= {Paris, France},
// month = {December}
// }
if (is_scc_acc)
{
// If lvl_cache is used and switching SCCs, use level
// from cache
if (use_lvl_cache && s_scc != scc
&& lvl_cache[d.first].second)
{
d.second = lvl_cache[d.first].first;
}
else
{
// Complete (or replace) the acceptance sets of
// this link with the acceptance sets common to
// all transitions leaving the destination state.
if (s_scc == scc)
acc |= otheracc;
else
acc = otheracc;
// If use_z_lvl is on, start with level zero 0 when
// swhitching SCCs
unsigned next = (!use_z_lvl || s_scc == scc) ? slevel : 0;
// If using custom acc orders, get next level
// for this scc
if (use_cust_acc_orders)
{
d.second = orders.next_level(scc, next, acc);
}
// Else compute level according the global acc order
else
{
// As a heuristic, if we enter the SCC on a
// state that has at least one accepting
// self-loop, start the degeneralization on
// the accepting level.
if (s_scc != scc
&& outgoing.has_acc_selfloop(d.first))
{
d.second = order.size();
}
else
{
// Consider both the current acceptance
// sets, and the acceptance sets common to
// the outgoing transitions of the
// destination state. But don't do
// that if the state is accepting and we
// are not skipping levels.
if (skip_levels || !is_acc)
while (next < order.size()
&& acc.has(order[next]))
{
++next;
if (!skip_levels)
break;
}
d.second = next;
}
}
}
}
// In case we are building a TBA is_acc has to be
// set differently for each transition, and
// we do not need to stay use final level.
if (!want_sba)
{
is_acc = d.second == order.size();
if (is_acc) // The transition is accepting
{
d.second = 0; // Make it go to the first level.
// Skip levels as much as possible.
if (!a->acc().accepting(acc) && !skip_levels)
{
if (use_cust_acc_orders)
{
d.second = orders.next_level(scc, d.second, acc);
}
else
{
while (d.second < order.size() &&
acc.has(order[d.second]))
++d.second;
}
}
}
}
// Have we already seen this destination?
int dest;
ds2num_map::const_iterator di = ds2num.find(d);
if (di != ds2num.end())
{
dest = di->second;
}
else
{
dest = res->new_state();
ds2num[d] = dest;
todo.push_back(d);
// Insert new state to cache
if (use_lvl_cache)
{
auto lvl = d.second;
if (lvl_cache[d.first].second)
{
if (use_lvl_cache == 3)
lvl = std::max(lvl_cache[d.first].first, lvl);
else if (use_lvl_cache == 2)
lvl = std::min(lvl_cache[d.first].first, lvl);
}
lvl_cache[d.first] = std::make_pair(lvl, true);
}
}
unsigned& t = tr_cache[dest * 2 + is_acc];
if (t == 0) // Create transition.
t = res->new_acc_transition(src, dest, i.cond, is_acc);
else // Update existing transition.
res->trans_data(t).cond |= i.cond;
}
tr_cache.clear();
}
#ifdef DEGEN_DEBUG
std::cout << "Orig. order: \t";
for (auto i: order)
{
std::cout << i << ", ";
}
std::cout << '\n';
orders.print();
#endif
delete m;
res->merge_transitions();
return res;
}
}
tgba_digraph_ptr
degeneralize(const const_tgba_digraph_ptr& a,
bool use_z_lvl, bool use_cust_acc_orders,
int use_lvl_cache, bool skip_levels)
{
// If this already a degeneralized digraph, there is nothing we
// can improve.
if (a->is_sba())
return std::const_pointer_cast(a);
return degeneralize_aux(a, use_z_lvl, use_cust_acc_orders,
use_lvl_cache, skip_levels);
}
tgba_digraph_ptr
degeneralize_tba(const const_tgba_digraph_ptr& a,
bool use_z_lvl, bool use_cust_acc_orders,
int use_lvl_cache, bool skip_levels)
{
// If this already a degeneralized digraph, there is nothing we
// can improve.
if (a->acc().is_buchi())
return std::const_pointer_cast(a);
return degeneralize_aux(a, use_z_lvl, use_cust_acc_orders,
use_lvl_cache, skip_levels);
}
}