// -*- coding: utf-8 -*-
// Copyright (C) 2015, 2016, 2018, 2020 Laboratoire de Recherche et Developpement de
// l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
#include "config.h"
#include
#include
namespace spot
{
spot::cube satone_to_cube(bdd one, cubeset& cubeset,
std::unordered_map& binder)
{
auto cube = cubeset.alloc();
while (one != bddtrue)
{
if (bdd_high(one) == bddfalse)
{
assert(binder.find(bdd_var(one)) != binder.end());
cubeset.set_false_var(cube, binder[bdd_var(one)]);
one = bdd_low(one);
}
else
{
assert(binder.find(bdd_var(one)) != binder.end());
cubeset.set_true_var(cube, binder[bdd_var(one)]);
one = bdd_high(one);
}
}
return cube;
}
bdd cube_to_bdd(spot::cube cube, const cubeset& cubeset,
std::unordered_map& reverse_binder)
{
bdd result = bddtrue;
for (unsigned int i = 0; i < cubeset.size(); ++i)
{
assert(reverse_binder.find(i) != reverse_binder.end());
if (cubeset.is_false_var(cube, i))
result &= bdd_nithvar(reverse_binder[i]);
if (cubeset.is_true_var(cube, i))
result &= bdd_ithvar(reverse_binder[i]);
}
return result;
}
spot::twacube_ptr twa_to_twacube(const spot::const_twa_graph_ptr aut)
{
if (aut == nullptr)
return nullptr;
// Compute the necessary binder and extract atomic propositions
std::unordered_map ap_binder;
std::vector* aps = extract_aps(aut, ap_binder);
// Declare the twa cube
auto tg = spot::make_twacube(*aps);
// Fix acceptance
tg->acc() = aut->acc();
// This binder maps twagraph indexes to twacube ones.
std::unordered_map st_binder;
// Fill binder and create corresponding states into twacube
for (unsigned n = 0; n < aut->num_states(); ++n)
st_binder.insert({n, tg->new_state()});
// Fix the initial state
tg->set_initial(st_binder[aut->get_init_state_number()]);
// Get the cubeset
auto cs = tg->get_cubeset();
// Now just build all transitions of this automaton
// spot::cube cube(aps);
for (unsigned n = 0; n < aut->num_states(); ++n)
for (auto& t: aut->out(n))
{
bdd cond = t.cond;
// Special case for bddfalse
if (cond == bddfalse)
{
spot::cube cube = tg->get_cubeset().alloc();
for (unsigned int i = 0; i < cs.size(); ++i)
cs.set_false_var(cube, i); // FIXME ! use fill!
tg->create_transition(st_binder[n], cube,
t.acc, st_binder[t.dst]);
}
else
// Split the bdd into multiple transitions
while (cond != bddfalse)
{
bdd one = bdd_satone(cond);
cond -= one;
spot::cube cube =spot::satone_to_cube(one, cs, ap_binder);
tg->create_transition(st_binder[n], cube, t.acc,
st_binder[t.dst]);
}
}
// Must be contiguous to support swarming.
assert(tg->succ_contiguous());
delete aps;
return tg;
}
std::vector*
extract_aps(const spot::const_twa_graph_ptr aut,
std::unordered_map& ap_binder)
{
std::vector* aps = new std::vector();
for (auto f: aut->ap())
{
int size = aps->size();
if (std::find(aps->begin(), aps->end(), f.ap_name()) == aps->end())
{
aps->push_back(f.ap_name());
ap_binder.insert({aut->get_dict()->var_map[f], size});
}
}
return aps;
}
spot::twa_graph_ptr
twacube_to_twa(spot::twacube_ptr twacube)
{
// Grab necessary variables
auto& theg = twacube->get_graph();
spot::cubeset cs = twacube->get_cubeset();
// Build the resulting graph
auto d = spot::make_bdd_dict();
auto res = make_twa_graph(d);
// Fix the acceptance of the resulting automaton
res->acc() = twacube->acc();
// Grep bdd id for each atomic propositions
std::vector bdds_ref;
for (auto& ap : twacube->ap())
bdds_ref.push_back(res->register_ap(ap));
// Build all resulting states
for (unsigned int i = 0; i < theg.num_states(); ++i)
{
unsigned st = res->new_state();
(void) st;
assert(st == i);
}
// Build all resulting conditions.
for (unsigned int i = 1; i <= theg.num_edges(); ++i)
{
bdd cond = bddtrue;
for (unsigned j = 0; j < cs.size(); ++j)
{
if (cs.is_true_var(theg.edge_data(i).cube_, j))
cond &= bdd_ithvar(bdds_ref[j]);
else if (cs.is_false_var(theg.edge_data(i).cube_, j))
cond &= bdd_nithvar(bdds_ref[j]);
// otherwise it 's a free variable do nothing
}
res->new_edge(theg.edge_storage(i).src, theg.edge_storage(i).dst,
cond, theg.edge_data(i).acc_);
}
// Fix the initial state
res->set_init_state(twacube->get_initial());
return res;
}
}