// -*- coding: utf-8 -*-
// Copyright (C) 2017 Laboratoire de Recherche et Développement
// de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
#include
#include
#include
#include
#include
#include
namespace spot
{
namespace
{
std::vector scc_edges(const const_twa_graph_ptr& aut,
const scc_info& si,
const unsigned scc)
{
std::vector edges;
for (unsigned s : si.states_of(scc))
for (const auto& t: aut->succ(aut->state_from_number(s)))
edges.push_back(aut->edge_number(t));
return edges;
}
//
std::vector scc_inner_edges(const const_twa_graph_ptr& aut,
const scc_info& si,
const unsigned scc)
{
auto edges = scc_edges(aut, si, scc);
edges.erase(std::remove_if(edges.begin(), edges.end(),
[&](unsigned e)
{
return si.scc_of(aut->edge_storage(e).dst) != scc;
}),
edges.end());
return edges;
}
twa_graph_ptr mask_keep_edges(const const_twa_graph_ptr& aut,
std::vector& to_keep,
unsigned int init)
{
if (to_keep.size() < aut->edge_vector().size())
to_keep.resize(aut->edge_vector().size(), false);
auto res = make_twa_graph(aut->get_dict());
res->copy_ap_of(aut);
res->prop_copy(aut, { false, true, false, true, false, false });
res->copy_acceptance_of(aut);
size_t states = aut->num_states();
std::vector> edges;
edges.resize(states);
for (size_t i = 0; i < states; ++i)
edges[i].resize(states, false);
for (size_t i = 0; i < aut->edge_vector().size(); ++i)
{
if (to_keep[i])
{
const auto& es = aut->edge_storage(i);
edges[es.src][es.dst] = true;
}
}
transform_copy(aut, res,
[&](unsigned src, bdd& cond, acc_cond::mark_t&,
unsigned dst)
{
if (!edges[src][dst])
cond = bddfalse;
},
init);
return res;
}
// Check whether the SCC contains non-accepting cycles.
//
// A cycle is accepting (in a Rabin automaton) if there exists an
// acceptance pair (Fᵢ, Iᵢ) such that some states from Iᵢ are
// visited while no states from Fᵢ are visited.
//
// Consequently, a cycle is non-accepting if for all acceptance
// pairs (Fᵢ, Iᵢ), either no states from Iᵢ are visited or some
// states from Fᵢ are visited. (This corresponds to an accepting
// cycle with Streett acceptance.)
//
// final are those edges which are used in the resulting tba
// acceptance condition.
bool is_scc_tba_type(const const_twa_graph_ptr& aut,
const scc_info& si,
const unsigned scc,
const acc_cond::mark_t fin_alone,
std::vector& final)
{
if (si.is_rejecting_scc(scc))
return true;
auto acc_pairs = aut->get_acceptance().used_inf_fin_sets();
auto infs = si.acc(scc) & acc_pairs.first;
auto fins = si.acc(scc) & acc_pairs.second;
auto infs_with_fins = (si.acc(scc) << 1U) & acc_pairs.first;
infs -= infs_with_fins;
// If there is one fin_alone that is not in the SCC,
// any cycle in the SCC is accepting.
if ((fins & fin_alone) != fin_alone)
{
for (auto e: scc_edges(aut, si, scc))
final[e] = true;
return true;
}
auto& states = si.states_of(scc);
// Firstly consider whole SCC as one large cycle.
// If there is no inf without matching fin then the cycle formed
// by the entire SCC is not accepting. However that does not
// necessarily imply that all cycles in the SCC are also
// non-accepting. We may have a smaller cycle that is
// accepting, but which becomes non-accepting when extended with
// more states.
if (!infs)
{
// Check whether the SCC is accepting. We do that by simply
// converting that SCC into a TGBA and running our emptiness
// check. This is not a really smart implementation and
// could be improved.
std::vector keep(aut->num_states(), false);
for (auto s: states)
keep[s] = true;
auto sccaut = mask_keep_accessible_states(aut,
keep,
states.front());
sccaut->prop_state_acc(false);
return sccaut->is_empty();
}
// Remaining infs corresponds to I₁s that have been seen with seeing
// the mathing F₁. In this SCC any edge in these I₁ is therefore
// final. Otherwise we do not know: it is possible that there is
// a non-accepting cycle in the SCC that do not visit Fᵢ.
std::set unknown;
for (auto e: scc_inner_edges(aut, si, scc))
if (aut->edge_data(e).acc & infs)
final[e] = true;
else
unknown.insert(e);
// Check whether it is possible to build non-accepting cycles
// using only the "unknown" edges.
std::vector keep(aut->edge_vector().size(), false);
for (auto e: unknown)
keep[e] = true;
while (!unknown.empty())
{
unsigned init = aut->edge_storage(*unknown.begin()).src;
scc_info si(mask_keep_edges(aut, keep, init));
unsigned scc_max = si.scc_count();
for (unsigned uscc = 0; uscc < scc_max; ++uscc)
{
for (auto e: scc_edges(aut, si, uscc))
{
unknown.erase(e);
keep[e] = false;
}
if (si.is_rejecting_scc(uscc))
continue;
if (!is_scc_tba_type(aut, si, uscc, fin_alone, final))
return false;
}
}
return true;
}
}
// Specialized conversion from transition based Rabin acceptance to
// transition based Büchi acceptance.
// Is able to detect SCCs that are TBA-type (i.e., they can be
// converted to Büchi acceptance without chaning their structure).
//
// See "Deterministic ω-automata vis-a-vis Deterministic Büchi
// Automata", S. Krishnan, A. Puri, and R. Brayton (ISAAC'94) for
// some details about detecting Büchi-typeness.
//
// We essentially apply this method SCC-wise. The paper is
// concerned about *deterministic* automata, but we apply the
// algorithm on non-deterministic automata as well: in the worst
// case it is possible that a TBA-type SCC with some
// non-deterministic has one accepting and one rejecting run for
// the same word. In this case we may fail to detect the
// TBA-typeness of the SCC, but the resulting automaton should
// be correct nonetheless.
twa_graph_ptr
tra_to_tba(const const_twa_graph_ptr& aut)
{
if (aut->prop_state_acc().is_true())
return nullptr;
std::vector pairs;
if (!aut->acc().is_rabin_like(pairs))
return nullptr;
auto code = aut->get_acceptance();
if (code.is_t())
return nullptr;
// if is TBA type
scc_info si{aut};
std::vector scc_is_tba_type(si.scc_count(), false);
std::vector final(aut->edge_vector().size(), false);
acc_cond::mark_t inf_alone = 0U;
acc_cond::mark_t fin_alone = 0U;
for (const auto& p: pairs)
if (!p.fin)
inf_alone &= p.inf;
else if (!p.inf)
fin_alone &= p.fin;
for (unsigned scc = 0; scc < si.scc_count(); ++scc)
{
scc_is_tba_type[scc] = is_scc_tba_type(aut, si, scc, fin_alone, final);
}
// compute final edges
auto res = make_twa_graph(aut->get_dict());
res->copy_ap_of(aut);
res->prop_copy(aut, { false, false, false, false, false, true });
res->new_states(aut->num_states());
res->set_buchi();
res->set_init_state(aut->get_init_state_number());
trival deterministic = aut->prop_universal();
trival complete = aut->prop_complete();
std::vector state_map(aut->num_states());
for (unsigned scc = 0; scc < si.scc_count(); ++scc)
{
auto states = si.states_of(scc);
if (scc_is_tba_type[scc])
{
for (unsigned e: scc_edges(aut, si, scc))
{
const auto& ed = aut->edge_data(e);
const auto& es = aut->edge_storage(e);
bool acc = final[e];
res->new_acc_edge(es.src, es.dst, ed.cond, acc);
}
}
else
{
deterministic = false;
complete = trival::maybe();
auto acc_pairs = aut->get_acceptance().used_inf_fin_sets();
auto infs = si.acc(scc) & acc_pairs.first;
auto infs_with_fins = (si.acc(scc) << 1U) & acc_pairs.first;
infs -= infs_with_fins;
for (auto e: scc_edges(aut, si, scc))
{
const auto& ed = aut->edge_data(e);
const auto& es = aut->edge_storage(e);
bool acc{ ed.acc & infs };
res->new_acc_edge(es.src, es.dst, ed.cond, acc);
}
auto rem = si.acc(scc) & acc_pairs.second;
assert(rem != 0U);
for (auto r: rem.sets())
{
unsigned base = res->new_states(states.size());
for (auto s: states)
state_map[s] = base++;
for (auto e: scc_inner_edges(aut, si, scc))
{
const auto& ed = aut->edge_data(e);
const auto& es = aut->edge_storage(e);
if (ed.acc.has(r))
continue;
auto src = state_map[es.src];
auto dst = state_map[es.dst];
res->new_acc_edge(src, dst, ed.cond, ed.acc.has(r + 1));
// We need only one non-deterministic jump per
// cycle. As an approximation, we only do
// them on back-links.
bool jacc{ed.acc & inf_alone};
if (es.dst <= es.src)
res->new_acc_edge(es.src, dst, ed.cond, jacc);
}
}
}
}
res->prop_complete(complete);
res->prop_universal(deterministic);
res->purge_dead_states();
res->merge_edges();
return res;
}
}