// -*- coding: utf-8 -*-
// Copyright (C) 2010-2017 Laboratoire de Recherche et Développement de
// l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
//#define TRACE
#include
#ifdef TRACE
#define trace std::clog
#else
#define trace while (0) std::clog
#endif
#include
#include
#include
#include
#include
#include
#include
#include
using namespace std;
namespace spot
{
namespace
{
typedef std::pair pair_state_iter;
static void
transform_to_single_pass_automaton
(const ta_explicit_ptr& testing_automata,
state_ta_explicit* artificial_livelock_acc_state = nullptr)
{
if (artificial_livelock_acc_state)
{
auto artificial_livelock_acc_state_added =
testing_automata->add_state(artificial_livelock_acc_state);
// unique artificial_livelock_acc_state
assert(artificial_livelock_acc_state_added
== artificial_livelock_acc_state);
(void)artificial_livelock_acc_state_added;
artificial_livelock_acc_state->set_livelock_accepting_state(true);
artificial_livelock_acc_state->free_transitions();
}
ta::states_set_t states_set = testing_automata->get_states_set();
ta::states_set_t::iterator it;
state_ta_explicit::transitions* transitions_to_livelock_states =
new state_ta_explicit::transitions;
for (it = states_set.begin(); it != states_set.end(); ++it)
{
auto source = const_cast
(static_cast(*it));
transitions_to_livelock_states->clear();
state_ta_explicit::transitions* trans = source->get_transitions();
state_ta_explicit::transitions::iterator it_trans;
if (trans)
for (it_trans = trans->begin(); it_trans != trans->end();)
{
auto dest = const_cast((*it_trans)->dest);
state_ta_explicit::transitions* dest_trans =
dest->get_transitions();
bool dest_trans_empty = !dest_trans || dest_trans->empty();
//select transitions where a destination is a livelock state
// which isn't a Buchi accepting state and has successors
if (dest->is_livelock_accepting_state()
&& (!dest->is_accepting_state()) && (!dest_trans_empty))
transitions_to_livelock_states->push_front(*it_trans);
// optimization to have, after minimization, a unique
// livelock state which has no successors
if (dest->is_livelock_accepting_state() && (dest_trans_empty))
dest->set_accepting_state(false);
++it_trans;
}
for (auto* trans: *transitions_to_livelock_states)
testing_automata->create_transition
(source, trans->condition,
trans->acceptance_conditions,
artificial_livelock_acc_state ?
artificial_livelock_acc_state :
trans->dest->stuttering_reachable_livelock, true);
}
delete transitions_to_livelock_states;
for (it = states_set.begin(); it != states_set.end(); ++it)
{
state_ta_explicit* state = static_cast (*it);
state_ta_explicit::transitions* state_trans =
(state)->get_transitions();
bool state_trans_empty = !state_trans || state_trans->empty();
if (state->is_livelock_accepting_state()
&& (!state->is_accepting_state()) && (!state_trans_empty))
state->set_livelock_accepting_state(false);
}
}
static void
compute_livelock_acceptance_states(const ta_explicit_ptr& testing_aut,
bool single_pass_emptiness_check,
state_ta_explicit*
artificial_livelock_acc_state)
{
// We use five main data in this algorithm:
// * sscc: a stack of strongly stuttering-connected components (SSCC)
scc_stack_ta sscc;
// * arc, a stack of acceptance conditions between each of these SCC,
std::stack arc;
// * h: a hash of all visited nodes, with their order,
// (it is called "Hash" in Couvreur's paper)
state_map h; ///< Heap of visited states.
// * num: the number of visited nodes. Used to set the order of each
// visited node,
int num = 0;
// * todo: the depth-first search stack. This holds pairs of the
// form (STATE, ITERATOR) where ITERATOR is a twa_succ_iterator
// over the successors of STATE. In our use, ITERATOR should
// always be freed when TODO is popped, but STATE should not because
// it is also used as a key in H.
std::stack todo;
// * init: the set of the depth-first search initial states
std::stack init_set;
for (auto s: testing_aut->get_initial_states_set())
init_set.push(s);
while (!init_set.empty())
{
// Setup depth-first search from initial states.
{
auto init = down_cast (init_set.top());
init_set.pop();
if (!h.emplace(init, num + 1).second)
{
init->destroy();
continue;
}
sscc.push(++num);
arc.push(0U);
sscc.top().is_accepting
= testing_aut->is_accepting_state(init);
twa_succ_iterator* iter = testing_aut->succ_iter(init);
iter->first();
todo.emplace(init, iter);
}
while (!todo.empty())
{
auto curr = todo.top().first;
auto i = h.find(curr);
// If we have reached a dead component, ignore it.
if (i != h.end() && i->second == -1)
{
todo.pop();
continue;
}
// We are looking at the next successor in SUCC.
twa_succ_iterator* succ = todo.top().second;
// If there is no more successor, backtrack.
if (succ->done())
{
// We have explored all successors of state CURR.
// Backtrack TODO.
todo.pop();
// fill rem with any component removed,
assert(i != h.end());
sscc.rem().push_front(curr);
// When backtracking the root of an SSCC, we must also
// remove that SSCC from the ROOT stacks. We must
// discard from H all reachable states from this SSCC.
assert(!sscc.empty());
if (sscc.top().index == i->second)
{
// removing states
bool is_livelock_accepting_sscc = (sscc.rem().size() > 1)
&& ((sscc.top().is_accepting) ||
(testing_aut->acc().
accepting(sscc.top().condition)));
trace << "*** sscc.size() = ***" << sscc.size() << '\n';
for (auto j: sscc.rem())
{
h[j] = -1;
if (is_livelock_accepting_sscc)
{
// if it is an accepting sscc add the state to
// G (=the livelock-accepting states set)
trace << "*** sscc.size() > 1: states: ***"
<< testing_aut->format_state(j)
<< '\n';
auto livelock_accepting_state =
const_cast
(down_cast(j));
livelock_accepting_state->
set_livelock_accepting_state(true);
if (single_pass_emptiness_check)
{
livelock_accepting_state
->set_accepting_state(true);
livelock_accepting_state
->stuttering_reachable_livelock
= livelock_accepting_state;
}
}
}
assert(!arc.empty());
sscc.pop();
arc.pop();
}
// automata reduction
testing_aut->delete_stuttering_and_hole_successors(curr);
delete succ;
// Do not delete CURR: it is a key in H.
continue;
}
// Fetch the values destination state we are interested in...
auto dest = succ->dst();
auto acc_cond = succ->acc();
// ... and point the iterator to the next successor, for
// the next iteration.
succ->next();
// We do not need SUCC from now on.
// Are we going to a new state through a stuttering transition?
bool is_stuttering_transition =
testing_aut->get_state_condition(curr)
== testing_aut->get_state_condition(dest);
auto id = h.find(dest);
// Is this a new state?
if (id == h.end())
{
if (!is_stuttering_transition)
{
init_set.push(dest);
dest->destroy();
continue;
}
// Number it, stack it, and register its successors
// for later processing.
h[dest] = ++num;
sscc.push(num);
arc.push(acc_cond);
sscc.top().is_accepting =
testing_aut->is_accepting_state(dest);
twa_succ_iterator* iter = testing_aut->succ_iter(dest);
iter->first();
todo.emplace(dest, iter);
continue;
}
dest->destroy();
// If we have reached a dead component, ignore it.
if (id->second == -1)
continue;
trace << "***compute_livelock_acceptance_states: CYCLE***\n";
if (!curr->compare(id->first))
{
auto self_loop_state = const_cast
(down_cast(curr));
if (testing_aut->is_accepting_state(self_loop_state)
|| (testing_aut->acc().accepting(acc_cond)))
{
self_loop_state->set_livelock_accepting_state(true);
if (single_pass_emptiness_check)
{
self_loop_state->set_accepting_state(true);
self_loop_state->stuttering_reachable_livelock
= self_loop_state;
}
}
trace
<< "***compute_livelock_acceptance_states: CYCLE: "
<< "self_loop_state***\n";
}
// Now this is the most interesting case. We have reached a
// state S1 which is already part of a non-dead SSCC. Any such
// non-dead SSCC has necessarily been crossed by our path to
// this state: there is a state S2 in our path which belongs
// to this SSCC too. We are going to merge all states between
// this S1 and S2 into this SSCC.
//
// This merge is easy to do because the order of the SSCC in
// ROOT is ascending: we just have to merge all SSCCs from the
// top of ROOT that have an index greater to the one of
// the SSCC of S2 (called the "threshold").
int threshold = id->second;
std::list rem;
bool acc = false;
while (threshold < sscc.top().index)
{
assert(!sscc.empty());
assert(!arc.empty());
acc |= sscc.top().is_accepting;
acc_cond |= sscc.top().condition;
acc_cond |= arc.top();
rem.splice(rem.end(), sscc.rem());
sscc.pop();
arc.pop();
}
// Note that we do not always have
// threshold == sscc.top().index
// after this loop, the SSCC whose index is threshold might have
// been merged with a lower SSCC.
// Accumulate all acceptance conditions into the merged SSCC.
sscc.top().is_accepting |= acc;
sscc.top().condition |= acc_cond;
sscc.rem().splice(sscc.rem().end(), rem);
}
}
if (artificial_livelock_acc_state || single_pass_emptiness_check)
transform_to_single_pass_automaton(testing_aut,
artificial_livelock_acc_state);
}
ta_explicit_ptr
build_ta(const ta_explicit_ptr& ta, bdd atomic_propositions_set_,
bool degeneralized,
bool single_pass_emptiness_check,
bool artificial_livelock_state_mode,
bool no_livelock)
{
std::stack todo;
const_twa_ptr tgba_ = ta->get_tgba();
// build Initial states set:
auto tgba_init_state = tgba_->get_init_state();
bdd tgba_condition = [&]()
{
bdd cond = bddfalse;
for (auto i: tgba_->succ(tgba_init_state))
cond |= i->cond();
return cond;
}();
bool is_acc = false;
if (degeneralized)
{
twa_succ_iterator* it = tgba_->succ_iter(tgba_init_state);
it->first();
if (!it->done())
is_acc = it->acc() != 0U;
delete it;
}
bdd satone_tgba_condition;
while ((satone_tgba_condition = bdd_satoneset(tgba_condition,
atomic_propositions_set_,
bddtrue)) != bddfalse)
{
tgba_condition -= satone_tgba_condition;
state_ta_explicit* init_state = new
state_ta_explicit(tgba_init_state->clone(),
satone_tgba_condition, true, is_acc);
state_ta_explicit* s = ta->add_state(init_state);
assert(s == init_state);
ta->add_to_initial_states_set(s);
todo.push(init_state);
}
tgba_init_state->destroy();
while (!todo.empty())
{
state_ta_explicit* source = todo.top();
todo.pop();
twa_succ_iterator* twa_succ_it =
tgba_->succ_iter(source->get_tgba_state());
for (twa_succ_it->first(); !twa_succ_it->done();
twa_succ_it->next())
{
const state* tgba_state = twa_succ_it->dst();
bdd tgba_condition = twa_succ_it->cond();
acc_cond::mark_t tgba_acceptance_conditions =
twa_succ_it->acc();
bdd satone_tgba_condition;
while ((satone_tgba_condition =
bdd_satoneset(tgba_condition,
atomic_propositions_set_, bddtrue))
!= bddfalse)
{
tgba_condition -= satone_tgba_condition;
bdd all_props = bddtrue;
bdd dest_condition;
bool is_acc = false;
if (degeneralized)
{
twa_succ_iterator* it = tgba_->succ_iter(tgba_state);
it->first();
if (!it->done())
is_acc = it->acc() != 0U;
delete it;
}
if (satone_tgba_condition == source->get_tgba_condition())
while ((dest_condition =
bdd_satoneset(all_props,
atomic_propositions_set_, bddtrue))
!= bddfalse)
{
all_props -= dest_condition;
state_ta_explicit* new_dest =
new state_ta_explicit(tgba_state->clone(),
dest_condition, false, is_acc);
state_ta_explicit* dest = ta->add_state(new_dest);
if (dest != new_dest)
{
// the state dest already exists in the automaton
new_dest->get_tgba_state()->destroy();
delete new_dest;
}
else
{
todo.push(dest);
}
bdd cs = bdd_setxor(source->get_tgba_condition(),
dest->get_tgba_condition());
ta->create_transition(source, cs,
tgba_acceptance_conditions, dest);
}
}
tgba_state->destroy();
}
delete twa_succ_it;
}
if (no_livelock)
return ta;
state_ta_explicit* artificial_livelock_acc_state = nullptr;
trace << "*** build_ta: artificial_livelock_acc_state_mode = ***"
<< artificial_livelock_state_mode << std::endl;
if (artificial_livelock_state_mode)
{
single_pass_emptiness_check = true;
artificial_livelock_acc_state =
new state_ta_explicit(ta->get_tgba()->get_init_state(), bddtrue,
false, false, true, nullptr);
trace
<< "*** build_ta: artificial_livelock_acc_state = ***"
<< artificial_livelock_acc_state << std::endl;
}
compute_livelock_acceptance_states(ta, single_pass_emptiness_check,
artificial_livelock_acc_state);
return ta;
}
}
ta_explicit_ptr
tgba_to_ta(const const_twa_ptr& tgba_, bdd atomic_propositions_set_,
bool degeneralized, bool artificial_initial_state_mode,
bool single_pass_emptiness_check,
bool artificial_livelock_state_mode,
bool no_livelock)
{
ta_explicit_ptr ta;
auto tgba_init_state = tgba_->get_init_state();
if (artificial_initial_state_mode)
{
state_ta_explicit* artificial_init_state =
new state_ta_explicit(tgba_init_state->clone(), bddfalse, true);
ta = make_ta_explicit(tgba_, tgba_->acc().num_sets(),
artificial_init_state);
}
else
{
ta = make_ta_explicit(tgba_, tgba_->acc().num_sets());
}
tgba_init_state->destroy();
// build ta automaton
build_ta(ta, atomic_propositions_set_, degeneralized,
single_pass_emptiness_check, artificial_livelock_state_mode,
no_livelock);
// (degeneralized=true) => TA
if (degeneralized)
return ta;
// (degeneralized=false) => GTA
// adapt a GTA to remove acceptance conditions from states
ta::states_set_t states_set = ta->get_states_set();
ta::states_set_t::iterator it;
for (it = states_set.begin(); it != states_set.end(); ++it)
{
state_ta_explicit* state = static_cast (*it);
if (state->is_accepting_state())
{
state_ta_explicit::transitions* trans = state->get_transitions();
state_ta_explicit::transitions::iterator it_trans;
for (it_trans = trans->begin(); it_trans != trans->end();
++it_trans)
(*it_trans)->acceptance_conditions = ta->acc().all_sets();
state->set_accepting_state(false);
}
}
return ta;
}
tgta_explicit_ptr
tgba_to_tgta(const const_twa_ptr& tgba_, bdd atomic_propositions_set_)
{
auto tgba_init_state = tgba_->get_init_state();
auto artificial_init_state = new state_ta_explicit(tgba_init_state->clone(),
bddfalse, true);
tgba_init_state->destroy();
auto tgta = make_tgta_explicit(tgba_, tgba_->acc().num_sets(),
artificial_init_state);
// build a Generalized TA automaton involving a single_pass_emptiness_check
// (without an artificial livelock state):
auto ta = tgta->get_ta();
build_ta(ta, atomic_propositions_set_, false, true, false, false);
trace << "***tgba_to_tgbta: POST build_ta***" << std::endl;
// adapt a ta automata to build tgta automata :
ta::states_set_t states_set = ta->get_states_set();
ta::states_set_t::iterator it;
twa_succ_iterator* initial_states_iter =
ta->succ_iter(ta->get_artificial_initial_state());
initial_states_iter->first();
if (initial_states_iter->done())
{
delete initial_states_iter;
return tgta;
}
bdd first_state_condition = initial_states_iter->cond();
delete initial_states_iter;
bdd bdd_stutering_transition = bdd_setxor(first_state_condition,
first_state_condition);
for (it = states_set.begin(); it != states_set.end(); ++it)
{
state_ta_explicit* state = static_cast (*it);
state_ta_explicit::transitions* trans = state->get_transitions();
if (state->is_livelock_accepting_state())
{
bool trans_empty = !trans || trans->empty();
if (trans_empty || state->is_accepting_state())
{
ta->create_transition(state, bdd_stutering_transition,
ta->acc().all_sets(), state);
}
}
if (state->compare(ta->get_artificial_initial_state()))
ta->create_transition(state, bdd_stutering_transition,
0U, state);
state->set_livelock_accepting_state(false);
state->set_accepting_state(false);
trace << "***tgba_to_tgbta: POST create_transition ***" << std::endl;
}
return tgta;
}
}