// -*- coding: utf-8 -*-
// Copyright (C) 2014, 2015, 2016, 2017 Laboratoire de Recherche et
// Développement de l'Epita.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
#include
#include
namespace spot
{
void
twa_graph::release_formula_namer(namer* namer,
bool keep_names)
{
if (keep_names)
{
auto v = new std::vector(num_states());
auto& n = namer->names();
unsigned ns = n.size();
assert(n.size() <= v->size());
for (unsigned i = 0; i < ns; ++i)
{
auto f = n[i];
if (f)
(*v)[i] = str_psl(f);
}
set_named_prop("state-names", v);
}
delete namer;
}
/// \brief Merge universal destinations
///
/// If several states have the same universal destination, merge
/// them all. Also remove unused destination, and any redundant
/// state in each destination.
void twa_graph::merge_univ_dests()
{
auto& g = get_graph();
auto& dests = g.dests_vector();
auto& edges = g.edge_vector();
std::vector old_dests;
std::swap(dests, old_dests);
std::vector seen(old_dests.size(), -1U);
internal::univ_dest_mapper uniq(g);
auto fixup = [&](unsigned& in_dst)
{
unsigned dst = in_dst;
if ((int) dst >= 0) // not a universal edge
return;
dst = ~dst;
unsigned& nd = seen[dst];
if (nd == -1U)
nd = uniq.new_univ_dests(old_dests.data() + dst + 1,
old_dests.data() + dst + 1 + old_dests[dst]);
in_dst = nd;
};
unsigned tend = edges.size();
for (unsigned t = 1; t < tend; t++)
{
if (g.is_dead_edge(t))
continue;
fixup(edges[t].dst);
}
fixup(init_number_);
}
void twa_graph::merge_edges()
{
set_named_prop("highlight-edges", nullptr);
g_.remove_dead_edges_();
if (!is_existential())
merge_univ_dests();
typedef graph_t::edge_storage_t tr_t;
g_.sort_edges_([](const tr_t& lhs, const tr_t& rhs)
{
if (lhs.src < rhs.src)
return true;
if (lhs.src > rhs.src)
return false;
if (lhs.dst < rhs.dst)
return true;
if (lhs.dst > rhs.dst)
return false;
return lhs.acc < rhs.acc;
// Do not sort on conditions, we'll merge
// them.
});
auto& trans = this->edge_vector();
unsigned tend = trans.size();
unsigned out = 0;
unsigned in = 1;
// Skip any leading false edge.
while (in < tend && trans[in].cond == bddfalse)
++in;
if (in < tend)
{
++out;
if (out != in)
trans[out] = trans[in];
for (++in; in < tend; ++in)
{
if (trans[in].cond == bddfalse) // Unusable edge
continue;
// Merge edges with the same source, destination, and
// acceptance. (We test the source last, because this is the
// most likely test to be true as edges are ordered by
// sources and then destinations.)
if (trans[out].dst == trans[in].dst
&& trans[out].acc == trans[in].acc
&& trans[out].src == trans[in].src)
{
trans[out].cond |= trans[in].cond;
}
else
{
++out;
if (in != out)
trans[out] = trans[in];
}
}
}
if (++out != tend)
trans.resize(out);
tend = out;
out = in = 2;
// FIXME: We could should also merge edges when using
// fin_acceptance, but the rule for Fin sets are different than
// those for Inf sets, (and we need to be careful if a set is used
// both as Inf and Fin)
if ((in < tend) && !acc().uses_fin_acceptance())
{
typedef graph_t::edge_storage_t tr_t;
g_.sort_edges_([](const tr_t& lhs, const tr_t& rhs)
{
if (lhs.src < rhs.src)
return true;
if (lhs.src > rhs.src)
return false;
if (lhs.dst < rhs.dst)
return true;
if (lhs.dst > rhs.dst)
return false;
return lhs.cond.id() < rhs.cond.id();
// Do not sort on acceptance, we'll merge
// them.
});
for (; in < tend; ++in)
{
// Merge edges with the same source, destination,
// and conditions. (We test the source last, for the
// same reason as above.)
if (trans[out].dst == trans[in].dst
&& trans[out].cond.id() == trans[in].cond.id()
&& trans[out].src == trans[in].src)
{
trans[out].acc |= trans[in].acc;
}
else
{
++out;
if (in != out)
trans[out] = trans[in];
}
}
if (++out != tend)
trans.resize(out);
}
g_.chain_edges_();
}
void twa_graph::purge_unreachable_states()
{
unsigned num_states = g_.num_states();
// The TODO vector serves two purposes:
// - it is a stack of state to process,
// - it is a set of processed states.
// The lower 31 bits of each entry is a state on the stack. (The
// next usable entry on the stack is indicated by todo_pos.) The
// 32th bit (i.e., the sign bit) of todo[x] indicates whether
// states number x has been seen.
std::vector todo(num_states, 0);
const unsigned seen = 1 << (sizeof(unsigned)*8-1);
const unsigned mask = seen - 1;
unsigned todo_pos = 0;
for (unsigned i: univ_dests(get_init_state_number()))
{
todo[i] |= seen;
todo[todo_pos++] |= i;
}
do
{
unsigned cur = todo[--todo_pos] & mask;
todo[todo_pos] ^= cur; // Zero the state
for (auto& t: g_.out(cur))
for (unsigned dst: univ_dests(t.dst))
if (!(todo[dst] & seen))
{
todo[dst] |= seen;
todo[todo_pos++] |= dst;
}
}
while (todo_pos > 0);
// Now renumber each used state.
unsigned current = 0;
for (auto& v: todo)
if (!(v & seen))
v = -1U;
else
v = current++;
if (current == todo.size())
return; // No unreachable state.
// Removing some non-deterministic dead state could make the
// automaton universal.
if (prop_universal().is_false())
prop_universal(trival::maybe());
if (prop_complete().is_false())
prop_complete(trival::maybe());
defrag_states(std::move(todo), current);
}
void twa_graph::purge_dead_states()
{
unsigned num_states = g_.num_states();
std::vector useful(num_states, 0);
// Make a DFS to compute a topological order.
std::vector order;
order.reserve(num_states);
bool purge_unreachable_needed = false;
if (is_existential())
{
std::vector> todo; // state, edge
useful[get_init_state_number()] = 1;
todo.emplace_back(init_number_, g_.state_storage(init_number_).succ);
do
{
unsigned src;
unsigned tid;
std::tie(src, tid) = todo.back();
if (tid == 0U)
{
todo.pop_back();
order.emplace_back(src);
continue;
}
auto& t = g_.edge_storage(tid);
todo.back().second = t.next_succ;
unsigned dst = t.dst;
if (useful[dst] != 1)
{
todo.emplace_back(dst, g_.state_storage(dst).succ);
useful[dst] = 1;
}
}
while (!todo.empty());
}
else
{
// state, edge, begin, end
std::vector> todo;
auto& dests = g_.dests_vector();
auto beginend = [&](const unsigned& dst,
const unsigned*& begin, const unsigned*& end)
{
if ((int)dst < 0)
{
begin = dests.data() + ~dst + 1;
end = begin + dests[~dst];
}
else
{
begin = &dst;
end = begin + 1;
}
};
{
const unsigned* begin;
const unsigned* end;
beginend(init_number_, begin, end);
todo.emplace_back(init_number_, 0U, begin, end);
}
for (;;)
{
unsigned& tid = std::get<1>(todo.back());
const unsigned*& begin = std::get<2>(todo.back());
const unsigned*& end = std::get<3>(todo.back());
if (tid == 0U && begin == end)
{
unsigned src = std::get<0>(todo.back());
todo.pop_back();
// Last transition from a state?
if ((int)src >= 0 && (todo.empty()
|| src != std::get<0>(todo.back())))
order.emplace_back(src);
if (todo.empty())
break;
else
continue;
}
unsigned dst = *begin++;
if (begin == end)
{
if (tid != 0)
tid = g_.edge_storage(tid).next_succ;
if (tid != 0)
beginend(g_.edge_storage(tid).dst, begin, end);
}
if (useful[dst] != 1)
{
auto& ss = g_.state_storage(dst);
unsigned succ = ss.succ;
if (succ == 0U)
continue;
useful[dst] = 1;
const unsigned* begin;
const unsigned* end;
beginend(g_.edge_storage(succ).dst, begin, end);
todo.emplace_back(dst, succ, begin, end);
}
}
}
// At this point, all reachable states with successors are marked
// as useful.
for (;;)
{
bool univ_edge_erased = false;
// Process states in topological order to mark those without
// successors as useless.
for (auto s: order)
{
auto t = g_.out_iteraser(s);
bool useless = true;
while (t)
{
// An edge is useful if all its
// destinations are useful.
bool usefuledge = true;
for (unsigned d: univ_dests(t->dst))
if (!useful[d])
{
usefuledge = false;
break;
}
// Erase any useless edge
if (!usefuledge)
{
if (is_univ_dest(t->dst))
univ_edge_erased = true;
t.erase();
continue;
}
// if we have a edge to a useful state, then the
// state is useful.
useless = false;
++t;
}
if (useless)
useful[s] = 0;
}
// If we have erased any universal destination, it is possible
// that we have have created some new dead states, so we
// actually need to redo the whole thing again until there is
// no more universal edge to remove. Also we might have
// created some unreachable states, so we will simply call
// purge_unreachable_states() later to clean this.
if (!univ_edge_erased)
break;
else
purge_unreachable_needed = true;
}
// Is the initial state actually useful? If not, make this an
// empty automaton by resetting the graph.
bool usefulinit = true;
for (unsigned d: univ_dests(init_number_))
if (!useful[d])
{
usefulinit = false;
break;
}
if (!usefulinit)
{
g_ = graph_t();
init_number_ = new_state();
prop_universal(true);
prop_complete(false);
prop_stutter_invariant(true);
prop_weak(true);
return;
}
// Renumber each used state.
unsigned current = 0;
for (unsigned s = 0; s < num_states; ++s)
if (useful[s])
useful[s] = current++;
else
useful[s] = -1U;
if (current == num_states)
return; // No useless state.
// Removing some non-deterministic dead state could make the
// automaton universal. Likewise for non-complete.
if (prop_universal().is_false())
prop_universal(trival::maybe());
if (prop_complete().is_false())
prop_complete(trival::maybe());
defrag_states(std::move(useful), current);
if (purge_unreachable_needed)
purge_unreachable_states();
}
void twa_graph::defrag_states(std::vector&& newst,
unsigned used_states)
{
if (!is_existential())
{
// Running defrag_states() on alternating automata is tricky,
// because we want to
// #1 rename the regular states
// #2 rename the states in universal destinations
// #3 get rid of the unused universal destinations
// #4 merge identical universal destinations
//
// graph::degrag_states() actually does only #1. It it could
// do #2, but that would prevent use from doing #3 and #4. It
// cannot do #3 and #4 because the graph object does not know
// what an initial state is, and our initial state might be
// universal.
//
// As a consequence this code preforms #2, #3, and #4 before
// calling graph::degrag_states() to finish with #1. We clear
// the "dests vector" of the current automaton, recreate all
// the new destination groups using a univ_dest_mapper to
// simplify and unify them, and extend newst with some new
// entries that will point the those new universal destination
// so that graph::defrag_states() does not have to deal with
// universal destination in any way.
auto& g = get_graph();
auto& dests = g.dests_vector();
// Clear the destination vector, saving the old one.
std::vector old_dests;
std::swap(dests, old_dests);
// dests will be updated as a side effect of declaring new
// destination groups to uniq.
internal::univ_dest_mapper uniq(g);
// The newst entry associated to each of the old destination
// group.
std::vector seen(old_dests.size(), -1U);
// Rename a state if it denotes a universal destination. This
// function has to be applied to the destination of each edge,
// as well as to the initial state. The need to work on the
// initial state is the reason it cannot be implemented in
// graph::defrag_states().
auto fixup = [&](unsigned& in_dst)
{
unsigned dst = in_dst;
if ((int) dst >= 0) // not a universal edge
return;
dst = ~dst;
unsigned& nd = seen[dst];
if (nd == -1U) // An unprocessed destination group
{
// store all renamed destination states in tmp
std::vector tmp;
auto begin = old_dests.data() + dst + 1;
auto end = begin + old_dests[dst];
while (begin != end)
{
unsigned n = newst[*begin++];
if (n == -1U)
continue;
tmp.emplace_back(n);
}
if (tmp.empty())
{
// All destinations of this group were marked for
// removal. Mark this universal transition for
// removal as well. Is this really what we expect?
nd = -1U;
}
else
{
// register this new destination group, add et two
// newst, and use the index in newst to relabel
// the state so that graph::degrag_states() will
// eventually update it to the correct value.
nd = newst.size();
newst.emplace_back(uniq.new_univ_dests(tmp.begin(),
tmp.end()));
}
}
in_dst = nd;
};
fixup(init_number_);
for (auto& e: edges())
fixup(e.dst);
}
if (auto* names = get_named_prop>("state-names"))
{
unsigned size = names->size();
for (unsigned s = 0; s < size; ++s)
{
unsigned dst = newst[s];
if (dst == s || dst == -1U)
continue;
(*names)[dst] = std::move((*names)[s]);
}
names->resize(used_states);
}
if (auto hs = get_named_prop>
("highlight-states"))
{
std::map hs2;
for (auto p: *hs)
{
unsigned dst = newst[p.first];
if (dst != -1U)
hs2[dst] = p.second;
}
std::swap(*hs, hs2);
}
init_number_ = newst[init_number_];
g_.defrag_states(std::move(newst), used_states);
}
void twa_graph::remove_unused_ap()
{
if (ap().empty())
return;
std::set conds;
bdd all = ap_vars();
for (auto& e: g_.edges())
{
all = bdd_exist(all, bdd_support(e.cond));
if (all == bddtrue) // All APs are used.
return;
}
auto d = get_dict();
while (all != bddtrue)
{
unregister_ap(bdd_var(all));
all = bdd_high(all);
}
}
}