// -*- coding: utf-8 -*-
// Copyright (C) 2014-2017 Laboratoire de Recherche et Développement
// de l'Epita (LRDE).
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
#include
#include
#include
#include
#include
#include
#include
namespace spot
{
namespace
{
struct scc
{
public:
scc(int index, acc_cond::mark_t in_acc):
in_acc(in_acc), index(index)
{
}
acc_cond::mark_t in_acc; // Acceptance sets on the incoming transition
acc_cond::mark_t acc = 0U; // union of all acceptance sets in the SCC
int index; // Index of the SCC
bool trivial = true; // Whether the SCC has no cycle
bool accepting = false; // Necessarily accepting
};
}
scc_info::scc_info(const_twa_graph_ptr aut)
: aut_(aut)
{
unsigned n = aut->num_states();
sccof_.resize(n, -1U);
std::deque live;
std::deque root_; // Stack of SCC roots.
std::vector h_(n, 0);
// Map of visited states. Values > 0 designate maximal SCC.
// Values < 0 number states that are part of incomplete SCCs being
// completed. 0 denotes non-visited states.
int num_ = 0; // Number of visited nodes, negated.
struct stack_item {
unsigned src;
unsigned out_edge;
unsigned univ_pos;
};
// DFS stack. Holds (STATE, TRANS, UNIV_POS) pairs where TRANS is
// the current outgoing transition of STATE, and UNIV_POS is used
// when the transition is universal to iterate over all possible
// destinations.
std::stack todo_;
auto& gr = aut->get_graph();
// Setup depth-first search from the initial state. But we may
// have a conjunction of initial state in alternating automata.
for (unsigned init: aut->univ_dests(aut->get_init_state_number()))
{
int spi = h_[init];
if (spi > 0)
continue;
assert(spi == 0);
h_[init] = --num_;
root_.emplace_back(num_, 0U);
todo_.emplace(stack_item{init, gr.state_storage(init).succ, 0});
live.emplace_back(init);
while (!todo_.empty())
{
// We are looking at the next successor in SUCC.
unsigned tr_succ = todo_.top().out_edge;
// If there is no more successor, backtrack.
if (!tr_succ)
{
// We have explored all successors of state CURR.
unsigned curr = todo_.top().src;
// Backtrack TODO_.
todo_.pop();
// When backtracking the root of an SCC, we must also
// remove that SCC from the ARC/ROOT stacks. We must
// discard from H all reachable states from this SCC.
assert(!root_.empty());
if (root_.back().index == h_[curr])
{
unsigned num = node_.size();
auto acc = root_.back().acc;
bool triv = root_.back().trivial;
node_.emplace_back(acc, triv);
// Move all elements of this SCC from the live stack
// to the the node.
auto i = std::find(live.rbegin(), live.rend(), curr);
assert(i != live.rend());
++i; // Because base() does -1
auto& nbs = node_.back().states_;
nbs.insert(nbs.end(), i.base(), live.end());
live.erase(i.base(), live.end());
std::set dests;
unsigned np1 = num + 1;
for (unsigned s: nbs)
{
sccof_[s] = num;
h_[s] = np1;
}
// Gather all successor SCCs
for (unsigned s: nbs)
for (auto& t: aut->out(s))
for (unsigned d: aut->univ_dests(t))
{
unsigned n = sccof_[d];
assert(n != -1U);
if (n == num)
continue;
dests.insert(n);
}
auto& succ = node_.back().succ_;
succ.insert(succ.end(), dests.begin(), dests.end());
bool accept = !triv && root_.back().accepting;
node_.back().accepting_ = accept;
bool reject = triv || !aut->acc().inf_satisfiable(acc);
// If the SCC acceptance is indeterminate, but has
// only self-loops with the same mark, it is
// necessarily rejecting, otherwise we would have
// found it to be accepting.
if (!accept && !reject && nbs.size() == 1)
{
acc_cond::mark_t selfacc = 0;
bool first = true;
reject = true;
for (const auto& e: aut->out(nbs.front()))
for (unsigned d: aut->univ_dests(e))
if (e.src == d)
{
if (first)
{
selfacc = e.acc;
first = false;
}
else if (selfacc != e.acc)
{
reject = false;
goto break2;
}
}
}
break2:
node_.back().rejecting_ = reject;
root_.pop_back();
}
continue;
}
// We have a successor to look at.
// Fetch the values we are interested in...
auto& e = gr.edge_storage(tr_succ);
unsigned dest = e.dst;
if ((int) dest < 0)
{
// Iterate over all destinations of a universal edge.
if (todo_.top().univ_pos == 0)
todo_.top().univ_pos = ~dest + 1;
const auto& v = gr.dests_vector();
dest = v[todo_.top().univ_pos];
// Last universal destination?
if (~e.dst + v[~e.dst] == todo_.top().univ_pos)
{
todo_.top().out_edge = e.next_succ;
todo_.top().univ_pos = 0;
}
else
{
++todo_.top().univ_pos;
}
}
else
{
todo_.top().out_edge = e.next_succ;
}
auto acc = e.acc;
// Are we going to a new state?
int spi = h_[dest];
if (spi == 0)
{
// Yes. Number it, stack it, and register its successors
// for later processing.
h_[dest] = --num_;
root_.emplace_back(num_, acc);
todo_.emplace(stack_item{dest, gr.state_storage(dest).succ, 0});
live.emplace_back(dest);
continue;
}
// We already know the state.
// Have we reached a maximal SCC?
if (spi > 0)
continue;
// Now this is the most interesting case. We have reached a
// state S1 which is already part of a non-dead SCC. Any such
// non-dead SCC has necessarily been crossed by our path to
// this state: there is a state S2 in our path which belongs
// to this SCC too. We are going to merge all states between
// this S1 and S2 into this SCC..
//
// This merge is easy to do because the order of the SCC in
// ROOT is descending: we just have to merge all SCCs from the
// top of ROOT that have an index lesser than the one of
// the SCC of S2 (called the "threshold").
int threshold = spi;
bool is_accepting = false;
// If this is a self-loop, check its acceptance alone.
if (dest == e.src)
is_accepting = aut->acc().accepting(acc);
assert(!root_.empty());
while (threshold > root_.back().index)
{
acc |= root_.back().acc;
acc |= root_.back().in_acc;
is_accepting |= root_.back().accepting;
root_.pop_back();
assert(!root_.empty());
}
// Note that we do not always have
// threshold == root_.back().index
// after this loop, the SCC whose index is threshold might have
// been merged with a higher SCC.
// Accumulate all acceptance conditions, states, SCC
// successors, and conditions into the merged SCC.
root_.back().acc |= acc;
root_.back().accepting |= is_accepting
|| aut->acc().accepting(root_.back().acc);
// This SCC is no longer trivial.
root_.back().trivial = false;
}
}
determine_usefulness();
}
void scc_info::determine_usefulness()
{
// An SCC is useful if it is not rejecting or it has a successor
// SCC that is useful.
unsigned scccount = scc_count();
for (unsigned i = 0; i < scccount; ++i)
{
if (!node_[i].is_rejecting())
{
node_[i].useful_ = true;
continue;
}
node_[i].useful_ = false;
for (unsigned j: node_[i].succ())
if (node_[j].is_useful())
{
node_[i].useful_ = true;
break;
}
}
}
std::set scc_info::used_acc_of(unsigned scc) const
{
std::set res;
for (auto src: states_of(scc))
for (auto& t: aut_->out(src))
if (scc_of(t.dst) == scc)
res.insert(t.acc);
return res;
}
acc_cond::mark_t scc_info::acc_sets_of(unsigned scc) const
{
acc_cond::mark_t res = 0U;
for (auto src: states_of(scc))
for (auto& t: aut_->out(src))
if (scc_of(t.dst) == scc)
res |= t.acc;
return res;
}
std::vector> scc_info::used_acc() const
{
unsigned n = aut_->num_states();
std::vector> result(scc_count());
for (unsigned src = 0; src < n; ++src)
{
unsigned src_scc = scc_of(src);
if (src_scc == -1U || is_rejecting_scc(src_scc))
continue;
auto& s = result[src_scc];
for (auto& t: aut_->out(src))
{
if (scc_of(t.dst) != src_scc)
continue;
s.insert(t.acc);
}
}
return result;
}
std::vector scc_info::weak_sccs() const
{
unsigned n = scc_count();
std::vector result(scc_count());
auto acc = used_acc();
for (unsigned s = 0; s < n; ++s)
result[s] = is_rejecting_scc(s) || acc[s].size() == 1;
return result;
}
bdd scc_info::scc_ap_support(unsigned scc) const
{
bdd support = bddtrue;
for (auto s: states_of(scc))
for (auto& t: aut_->out(s))
support &= bdd_support(t.cond);
return support;
}
void scc_info::determine_unknown_acceptance()
{
if (!aut_->is_existential())
throw std::runtime_error("scc_info::determine_unknown_acceptance() "
"does not support alternating automata");
std::vector k;
unsigned n = scc_count();
bool changed = false;
for (unsigned s = 0; s < n; ++s)
if (!is_rejecting_scc(s) && !is_accepting_scc(s))
{
auto& node = node_[s];
if (k.empty())
k.resize(aut_->num_states());
for (auto i: node.states_)
k[i] = true;
if (mask_keep_accessible_states(aut_, k, node.states_.front())
->is_empty())
node.rejecting_ = true;
else
node.accepting_ = true;
changed = true;
}
if (changed)
determine_usefulness();
}
std::ostream&
dump_scc_info_dot(std::ostream& out,
const_twa_graph_ptr aut, scc_info* sccinfo)
{
scc_info* m = sccinfo ? sccinfo : new scc_info(aut);
out << "digraph G {\n i [label=\"\", style=invis, height=0]\n";
int start = m->scc_of(aut->get_init_state_number());
out << " i -> " << start << std::endl;
std::vector seen(m->scc_count());
seen[start] = true;
std::queue q;
q.push(start);
while (!q.empty())
{
int state = q.front();
q.pop();
out << " " << state << " [shape=box,"
<< (aut->acc().accepting(m->acc(state)) ? "style=bold," : "")
<< "label=\"" << state;
{
size_t n = m->states_of(state).size();
out << " (" << n << " state";
if (n > 1)
out << 's';
out << ')';
}
out << "\"]\n";
for (unsigned dest: m->succ(state))
{
out << " " << state << " -> " << dest << '\n';
if (seen[dest])
continue;
seen[dest] = true;
q.push(dest);
}
}
out << "}\n";
if (!sccinfo)
delete m;
return out;
}
}