// -*- coding: utf-8 -*- // Copyright (C) 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 // Laboratoire de Recherche et Développement de l'Epita (LRDE). // Copyright (C) 2003, 2004, 2005, 2006, 2007 Laboratoire // d'Informatique de Paris 6 (LIP6), département Systèmes Répartis // Coopératifs (SRC), Université Pierre et Marie Curie. // // This file is part of Spot, a model checking library. // // Spot is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // // Spot is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . #include #include #include #include #include #include #include "ltlvisit/tostring.hh" #include "ltlvisit/apcollect.hh" #include "ltlast/allnodes.hh" #include "ltlparse/public.hh" #include "tgbaalgos/ltl2tgba_fm.hh" #include "tgbaalgos/ltl2taa.hh" #include "tgba/bddprint.hh" #include "tgbaalgos/dotty.hh" #include "tgbaalgos/lbtt.hh" #include "tgbaalgos/hoa.hh" #include "tgbaalgos/degen.hh" #include "tgba/tgbaproduct.hh" #include "tgbaalgos/reducerun.hh" #include "dstarparse/public.hh" #include "hoaparse/public.hh" #include "tgbaalgos/dupexp.hh" #include "tgbaalgos/minimize.hh" #include "taalgos/minimize.hh" #include "tgbaalgos/neverclaim.hh" #include "tgbaalgos/replayrun.hh" #include "tgbaalgos/sccfilter.hh" #include "tgbaalgos/safety.hh" #include "tgbaalgos/gtec/gtec.hh" #include "misc/timer.hh" #include "tgbaalgos/stats.hh" #include "tgbaalgos/sccinfo.hh" #include "tgbaalgos/emptiness_stats.hh" #include "tgbaalgos/scc.hh" #include "tgbaalgos/sccinfo.hh" #include "tgbaalgos/isdet.hh" #include "tgbaalgos/cycles.hh" #include "tgbaalgos/isweakscc.hh" #include "kripkeparse/public.hh" #include "tgbaalgos/simulation.hh" #include "tgbaalgos/compsusp.hh" #include "tgbaalgos/powerset.hh" #include "tgbaalgos/dtgbacomp.hh" #include "tgbaalgos/complete.hh" #include "tgbaalgos/dtbasat.hh" #include "tgbaalgos/dtgbasat.hh" #include "tgbaalgos/stutter.hh" #include "taalgos/tgba2ta.hh" #include "taalgos/dotty.hh" #include "taalgos/stats.hh" std::string ltl_defs() { std::string s = "\ X=(0 1 true \ 1 2 $0 \ accept 2) \ U=(0 0 $0 \ 0 1 $1 \ accept 1) \ G=(0 0 $0) \ F=U(true, $0) \ W=G($0)|U($0, $1) \ R=!U(!$0, !$1) \ M=F($0)&R($0, $1)"; return s; } void syntax(char* prog) { // Display the supplied name unless it appears to be a libtool wrapper. char* slash = strrchr(prog, '/'); if (slash && (strncmp(slash + 1, "lt-", 3) == 0)) prog = slash + 4; std::cerr << "Usage: "<< prog << " [-f|-l|-taa] [OPTIONS...] formula" << std::endl << " "<< prog << " [-f|-l|-taa] -F [OPTIONS...] file" << std::endl << " "<< prog << " -XH [OPTIONS...] file" << std::endl << std::endl << "Translate an LTL formula into an automaton, or read the " << "automaton from a file." << std::endl << "Optionally multiply this automaton by another" << " automaton read from a file." << std::endl << "Output the result in various formats, or perform an emptiness " << "check." << std::endl << std::endl << "Input options:" << std::endl << " -F read the formula from a file, not from the command line" << std::endl << " -XD do not compute an automaton, read it from an" << " ltl2dstar file" << std::endl << " -XDB read the from an ltl2dstar file and convert it to " << "TGBA" << std::endl << " -XDD read the from an ltl2dstar file and convert it to " << "TGBA,\n keeping it deterministic when possible\n" << " -XH do not compute an automaton, read it from a" << " HOA file\n" << " -XL do not compute an automaton, read it from an" << " LBTT file" << std::endl << " -XN do not compute an automaton, read it from a" << " neverclaim file" << std::endl << " -Pfile multiply the formula automaton with the TGBA read" << " from `file'\n" << " -KPfile multiply the formula automaton with the Kripke" << " structure from `file'\n" << std::endl << "Translation algorithm:" << std::endl << " -f use Couvreur's FM algorithm for LTL" << " (default)" << std::endl << " -taa use Tauriainen's TAA-based algorithm for LTL" << std::endl << " -u use Compositional translation" << std::endl << std::endl << "Options for Couvreur's FM algorithm (-f):" << std::endl << " -fr reduce formula at each step of FM" << std::endl << " as specified with the -r{1..7} options" << std::endl << " -L fair-loop approximation (implies -f)" << std::endl << " -p branching postponement (implies -f)" << std::endl << " -U[PROPS] consider atomic properties of the formula as " << "exclusive events, and" << std::endl << " PROPS as unobservables events (implies -f)" << std::endl << " -x try to produce a more deterministic automaton " << "(implies -f)" << std::endl << " -y do not merge states with same symbolic representation " << "(implies -f)" << std::endl << std::endl << "Options for Tauriainen's TAA-based algorithm (-taa):" << std::endl << " -c enable language containment checks (implies -taa)" << std::endl << std::endl << "Formula simplification (before translation):" << std::endl << " -r1 reduce formula using basic rewriting" << std::endl << " -r2 reduce formula using class of eventuality and " << "universality" << std::endl << " -r3 reduce formula using implication between " << "sub-formulae" << std::endl << " -r4 reduce formula using all above rules" << std::endl << " -r5 reduce formula using tau03" << std::endl << " -r6 reduce formula using tau03+" << std::endl << " -r7 reduce formula using tau03+ and -r4" << std::endl << " -rd display the reduced formula" << std::endl << " -rD dump statistics about the simplifier cache" << std::endl << " -rL disable basic rewritings producing larger formulas" << std::endl << " -ru lift formulae that are eventual and universal" << std::endl << std::endl << "Automaton degeneralization (after translation):" << std::endl << " -DT degeneralize the automaton as a TBA" << std::endl << " -DS degeneralize the automaton as an SBA" << std::endl << " (append z/Z, o/O, l/L: to turn on/off options " << "(default: zol)\n " << " z: level resetting, o: adaptive order, " << "l: level cache)\n" << std::endl << "Automaton simplifications (after translation):" << std::endl << " -R3 use SCC to reduce the automaton" << std::endl << " -R3f clean more acceptance conditions than -R3" << std::endl << " " << "(prefer -R3 over -R3f if you degeneralize with -D, -DS, or -N)" << std::endl << " -RDS reduce the automaton with direct simulation" << std::endl << " -RRS reduce the automaton with reverse simulation" << std::endl << " -RIS iterate both direct and reverse simulations" << std::endl << " -Rm attempt to WDBA-minimize the automaton" << std::endl << std::endl << " -RM attempt to WDBA-minimize the automaton unless the " << "result is bigger" << std::endl << " -RQ determinize a TGBA (assuming it's legal!)" << std::endl << std::endl << "Automaton conversion:" << std::endl << " -M convert into a deterministic minimal monitor " << "(implies -R3 or R3b)" << std::endl << " -s convert to explicit automaton, and number states " << "in DFS order" << std::endl << " -S convert to explicit automaton, and number states " << "in BFS order" << std::endl << std::endl << "Conversion to Testing Automaton:" << std::endl << " -TA output a Generalized Testing Automaton (GTA),\n" << " or a Testing Automaton (TA) with -DS\n" << " -lv add an artificial livelock state to obtain a " << "Single-pass (G)TA\n" << " -sp convert into a single-pass (G)TA without artificial " << "livelock state\n" << " -in do not use an artificial initial state\n" << " -TGTA output a Transition-based Generalized TA" << std::endl << " -RT reduce the (G)TA/TGTA using bisimulation.\n" << std::endl << "Options for performing emptiness checks (on TGBA):" << std::endl << " -e[ALGO] run emptiness check, expect and compute an " << "accepting run" << std::endl << " -E[ALGO] run emptiness check, expect no accepting run" << std::endl << " -C compute an accepting run (Counterexample) if it exists" << std::endl << " -CR compute and replay an accepting run (implies -C)" << std::endl << " -G graph the accepting run seen as an automaton " << " (requires -e)" << std::endl << " -m try to reduce accepting runs, in a second pass" << std::endl << "Where ALGO should be one of:" << std::endl << " Cou99(OPTIONS) (the default)" << std::endl << " CVWY90(OPTIONS)" << std::endl << " GV04(OPTIONS)" << std::endl << " SE05(OPTIONS)" << std::endl << " Tau03(OPTIONS)" << std::endl << " Tau03_opt(OPTIONS)" << std::endl << std::endl << "If no emptiness check is run, the automaton will be output " << "in dot format" << std::endl << "by default. This can be " << "changed with the following options." << std::endl << std::endl << "Output options (if no emptiness check):" << std::endl << " -ks display statistics on the automaton (size only)" << std::endl << " -kt display statistics on the automaton (size + " << "subtransitions)" << std::endl << " -K dump the graph of SCCs in dot format" << std::endl << " -KV verbosely dump the graph of SCCs in dot format" << std::endl << " -KC list cycles in automaton" << std::endl << " -KW list weak SCCs" << std::endl << " -N output the never clain for Spin (implies -DS)" << std::endl << " -NN output the never clain for Spin, with commented states" << " (implies -DS)" << std::endl << " -O tell if a formula represents a safety, guarantee, " << "or obligation property" << std::endl << " -t output automaton in LBTT's format" << std::endl << std::endl << "Miscellaneous options:" << std::endl << " -0 produce minimal output dedicated to the paper" << std::endl << " -8 output UTF-8 formulae" << std::endl << " -d turn on traces during parsing" << std::endl << " -T time the different phases of the translation" << std::endl << " -v display the BDD variables used by the automaton" << std::endl << std::endl; exit(2); } static int to_int(const char* s) { char* endptr; int res = strtol(s, &endptr, 10); if (*endptr) { std::cerr << "Failed to parse `" << s << "' as an integer." << std::endl; exit(1); } return res; } spot::tgba_digraph_ptr ensure_digraph(const spot::tgba_ptr& a) { auto aa = std::dynamic_pointer_cast(a); if (aa) return aa; return spot::make_tgba_digraph(a, spot::twa::prop_set::all()); } int checked_main(int argc, char** argv) { int exit_code = 0; bool debug_opt = false; bool paper_opt = false; bool utf8_opt = false; enum { NoDegen, DegenTBA, DegenSBA } degeneralize_opt = NoDegen; enum { TransFM, TransTAA, TransCompo } translation = TransFM; bool fm_red = false; bool fm_exprop_opt = false; bool fm_symb_merge_opt = true; bool file_opt = false; bool degen_reset = true; bool degen_order = false; bool degen_cache = true; int output = 0; int formula_index = 0; const char* echeck_algo = 0; spot::emptiness_check_instantiator_ptr echeck_inst = 0; enum { NoneDup, BFS, DFS } dupexp = NoneDup; bool expect_counter_example = false; bool accepting_run = false; bool accepting_run_replay = false; bool from_file = false; enum { ReadDstar, ReadHoa } readformat = ReadHoa; bool nra2nba = false; bool dra2dba = false; bool scc_filter = false; bool simpltl = false; spot::ltl::ltl_simplifier_options redopt(false, false, false, false, false, false, false); bool simpcache_stats = false; bool scc_filter_all = false; bool display_reduced_form = false; bool post_branching = false; bool fair_loop_approx = false; bool graph_run_tgba_opt = false; bool opt_reduce = false; bool opt_minimize = false; bool opt_determinize = false; unsigned opt_determinize_threshold = 0; unsigned opt_o_threshold = 0; bool opt_dtgbacomp = false; bool reject_bigger = false; bool opt_monitor = false; bool containment = false; bool opt_closure = false; bool opt_stutterize = false; const char* opt_never = nullptr; const char* hoa_opt = nullptr; auto& env = spot::ltl::default_environment::instance(); spot::ltl::atomic_prop_set* unobservables = 0; spot::tgba_ptr system_aut = 0; auto dict = spot::make_bdd_dict(); spot::timer_map tm; bool use_timer = false; bool reduction_dir_sim = false; bool reduction_rev_sim = false; bool reduction_iterated_sim = false; bool opt_bisim_ta = false; bool ta_opt = false; bool tgta_opt = false; bool opt_with_artificial_initial_state = true; bool opt_single_pass_emptiness_check = false; bool opt_with_artificial_livelock = false; bool cs_nowdba = true; bool cs_wdba_smaller = false; bool cs_nosimul = true; bool cs_early_start = false; bool cs_oblig = false; bool opt_complete = false; int opt_dtbasat = -1; int opt_dtgbasat = -1; for (;;) { if (argc < formula_index + 2) syntax(argv[0]); ++formula_index; if (!strcmp(argv[formula_index], "-0")) { paper_opt = true; } else if (!strcmp(argv[formula_index], "-8")) { utf8_opt = true; spot::enable_utf8(); } else if (!strcmp(argv[formula_index], "-c")) { containment = true; translation = TransTAA; } else if (!strcmp(argv[formula_index], "-C")) { accepting_run = true; } else if (!strcmp(argv[formula_index], "-CR")) { accepting_run = true; accepting_run_replay = true; } else if (!strcmp(argv[formula_index], "-d")) { debug_opt = true; } else if (!strcmp(argv[formula_index], "-D")) { std::cerr << "-D was renamed to -DT\n"; abort(); } else if (!strcmp(argv[formula_index], "-DC")) { opt_dtgbacomp = true; } else if (!strncmp(argv[formula_index], "-DS", 3) || !strncmp(argv[formula_index], "-DT", 3)) { degeneralize_opt = argv[formula_index][2] == 'S' ? DegenSBA : DegenTBA; const char* p = argv[formula_index] + 3; while (*p) { switch (*p++) { case 'o': degen_order = true; break; case 'O': degen_order = false; break; case 'z': degen_reset = true; break; case 'Z': degen_reset = false; break; case 'l': degen_cache = true; break; case 'L': degen_cache = false; break; } } } else if (!strncmp(argv[formula_index], "-e", 2)) { echeck_algo = 2 + argv[formula_index]; if (!*echeck_algo) echeck_algo = "Cou99"; const char* err; echeck_inst = spot::make_emptiness_check_instantiator(echeck_algo, &err); if (!echeck_inst) { std::cerr << "Failed to parse argument of -e near `" << err << '\'' << std::endl; exit(2); } expect_counter_example = true; output = -1; } else if (!strncmp(argv[formula_index], "-E", 2)) { const char* echeck_algo = 2 + argv[formula_index]; if (!*echeck_algo) echeck_algo = "Cou99"; const char* err; echeck_inst = spot::make_emptiness_check_instantiator(echeck_algo, &err); if (!echeck_inst) { std::cerr << "Failed to parse argument of -e near `" << err << '\'' << std::endl; exit(2); } expect_counter_example = false; output = -1; } else if (!strcmp(argv[formula_index], "-f")) { translation = TransFM; } else if (!strcmp(argv[formula_index], "-fr")) { fm_red = true; translation = TransFM; } else if (!strcmp(argv[formula_index], "-F")) { file_opt = true; } else if (!strcmp(argv[formula_index], "-G")) { accepting_run = true; graph_run_tgba_opt = true; } else if (!strncmp(argv[formula_index], "-H", 2)) { output = 17; hoa_opt = argv[formula_index] + 2; } else if (!strcmp(argv[formula_index], "-ks")) { output = 12; } else if (!strcmp(argv[formula_index], "-kt")) { output = 13; } else if (!strcmp(argv[formula_index], "-K")) { output = 10; } else if (!strncmp(argv[formula_index], "-KP", 3)) { tm.start("reading -KP's argument"); spot::kripke_parse_error_list pel; system_aut = spot::kripke_parse(argv[formula_index] + 3, pel, dict, env, debug_opt); if (spot::format_kripke_parse_errors(std::cerr, argv[formula_index] + 2, pel)) return 2; tm.stop("reading -KP's argument"); } else if (!strcmp(argv[formula_index], "-KV")) { output = 11; } else if (!strcmp(argv[formula_index], "-KC")) { output = 15; } else if (!strcmp(argv[formula_index], "-KW")) { output = 16; } else if (!strcmp(argv[formula_index], "-L")) { fair_loop_approx = true; translation = TransFM; } else if (!strcmp(argv[formula_index], "-m")) { opt_reduce = true; } else if (!strcmp(argv[formula_index], "-N")) { degeneralize_opt = DegenSBA; output = 8; opt_never = nullptr; } else if (!strcmp(argv[formula_index], "-NN")) { degeneralize_opt = DegenSBA; output = 8; opt_never = "c"; } else if (!strncmp(argv[formula_index], "-O", 2)) { output = 14; opt_minimize = true; if (argv[formula_index][2] != 0) opt_o_threshold = to_int(argv[formula_index] + 2); } else if (!strcmp(argv[formula_index], "-p")) { post_branching = true; translation = TransFM; } else if (!strncmp(argv[formula_index], "-P", 2)) { tm.start("reading -P's argument"); spot::dstar_parse_error_list pel; auto daut = spot::hoa_parse(argv[formula_index] + 2, pel, dict, env, debug_opt); if (spot::format_hoa_parse_errors(std::cerr, argv[formula_index] + 2, pel)) return 2; daut->aut->merge_transitions(); system_aut = daut->aut; tm.stop("reading -P's argument"); } else if (!strcmp(argv[formula_index], "-r1")) { simpltl = true; redopt.reduce_basics = true; } else if (!strcmp(argv[formula_index], "-r2")) { simpltl = true; redopt.event_univ = true; } else if (!strcmp(argv[formula_index], "-r3")) { simpltl = true; redopt.synt_impl = true; } else if (!strcmp(argv[formula_index], "-r4")) { simpltl = true; redopt.reduce_basics = true; redopt.event_univ = true; redopt.synt_impl = true; } else if (!strcmp(argv[formula_index], "-r5")) { simpltl = true; redopt.containment_checks = true; } else if (!strcmp(argv[formula_index], "-r6")) { simpltl = true; redopt.containment_checks = true; redopt.containment_checks_stronger = true; } else if (!strcmp(argv[formula_index], "-r7")) { simpltl = true; redopt.reduce_basics = true; redopt.event_univ = true; redopt.synt_impl = true; redopt.containment_checks = true; redopt.containment_checks_stronger = true; } else if (!strcmp(argv[formula_index], "-R1q") || !strcmp(argv[formula_index], "-R1t") || !strcmp(argv[formula_index], "-R2q") || !strcmp(argv[formula_index], "-R2t")) { // For backward compatibility, make all these options // equal to -RDS. reduction_dir_sim = true; } else if (!strcmp(argv[formula_index], "-RRS")) { reduction_rev_sim = true; } else if (!strcmp(argv[formula_index], "-R3")) { scc_filter = true; } else if (!strcmp(argv[formula_index], "-R3f")) { scc_filter = true; scc_filter_all = true; } else if (!strcmp(argv[formula_index], "-rd")) { display_reduced_form = true; } else if (!strcmp(argv[formula_index], "-rD")) { simpcache_stats = true; } else if (!strcmp(argv[formula_index], "-RC")) { opt_complete = true; } else if (!strcmp(argv[formula_index], "-RDS")) { reduction_dir_sim = true; } else if (!strcmp(argv[formula_index], "-RIS")) { reduction_iterated_sim = true; } else if (!strcmp(argv[formula_index], "-rL")) { simpltl = true; redopt.reduce_basics = true; redopt.reduce_size_strictly = true; } else if (!strncmp(argv[formula_index], "-RG", 3)) { if (argv[formula_index][3] != 0) opt_dtgbasat = to_int(argv[formula_index] + 3); else opt_dtgbasat = 0; //output = -1; } else if (!strcmp(argv[formula_index], "-Rm")) { opt_minimize = true; } else if (!strcmp(argv[formula_index], "-RM")) { opt_minimize = true; reject_bigger = true; } else if (!strncmp(argv[formula_index], "-RQ", 3)) { opt_determinize = true; if (argv[formula_index][3] != 0) opt_determinize_threshold = to_int(argv[formula_index] + 3); } else if (!strncmp(argv[formula_index], "-RS", 3)) { if (argv[formula_index][3] != 0) opt_dtbasat = to_int(argv[formula_index] + 3); else opt_dtbasat = 0; //output = -1; } else if (!strcmp(argv[formula_index], "-RT")) { opt_bisim_ta = true; } else if (!strcmp(argv[formula_index], "-ru")) { simpltl = true; redopt.event_univ = true; redopt.favor_event_univ = true; } else if (!strcmp(argv[formula_index], "-M")) { opt_monitor = true; } else if (!strcmp(argv[formula_index], "-s")) { dupexp = DFS; } else if (!strcmp(argv[formula_index], "-S")) { dupexp = BFS; } else if (!strcmp(argv[formula_index], "-CL")) { opt_closure = true; } else if (!strcmp(argv[formula_index], "-ST")) { opt_stutterize = true; } else if (!strcmp(argv[formula_index], "-t")) { output = 6; } else if (!strcmp(argv[formula_index], "-T")) { use_timer = true; } else if (!strcmp(argv[formula_index], "-TA")) { ta_opt = true; } else if (!strcmp(argv[formula_index], "-TGTA")) { tgta_opt = true; } else if (!strcmp(argv[formula_index], "-lv")) { opt_with_artificial_livelock = true; } else if (!strcmp(argv[formula_index], "-sp")) { opt_single_pass_emptiness_check = true; } else if (!strcmp(argv[formula_index], "-in")) { opt_with_artificial_initial_state = false; } else if (!strcmp(argv[formula_index], "-taa")) { translation = TransTAA; } else if (!strncmp(argv[formula_index], "-U", 2)) { unobservables = new spot::ltl::atomic_prop_set; translation = TransFM; // Parse -U's argument. const char* tok = strtok(argv[formula_index] + 2, ", \t;"); while (tok) { unobservables->insert(env.require(tok)); tok = strtok(0, ", \t;"); } } else if (!strncmp(argv[formula_index], "-u", 2)) { translation = TransCompo; const char* c = argv[formula_index] + 2; while (*c != 0) { switch (*c) { case '2': cs_nowdba = false; cs_wdba_smaller = true; break; case 'w': cs_nowdba = false; cs_wdba_smaller = false; break; case 's': cs_nosimul = false; break; case 'e': cs_early_start = true; break; case 'W': cs_nowdba = true; break; case 'S': cs_nosimul = true; break; case 'E': cs_early_start = false; break; case 'o': cs_oblig = true; break; case 'O': cs_oblig = false; break; default: std::cerr << "Unknown suboption `" << *c << "' for option -u" << std::endl; } ++c; } } else if (!strcmp(argv[formula_index], "-v")) { output = 5; } else if (!strcmp(argv[formula_index], "-x")) { translation = TransFM; fm_exprop_opt = true; } else if (!strcmp(argv[formula_index], "-XD")) { from_file = true; readformat = ReadDstar; } else if (!strcmp(argv[formula_index], "-XDB")) { from_file = true; readformat = ReadDstar; nra2nba = true; } else if (!strcmp(argv[formula_index], "-XDD")) { from_file = true; readformat = ReadDstar; nra2nba = true; dra2dba = true; } else if (!strcmp(argv[formula_index], "-XH")) { from_file = true; readformat = ReadHoa; } else if (!strcmp(argv[formula_index], "-XL")) { from_file = true; readformat = ReadHoa; } else if (!strcmp(argv[formula_index], "-XN")) // now synonym for -XH { from_file = true; readformat = ReadHoa; } else if (!strcmp(argv[formula_index], "-y")) { translation = TransFM; fm_symb_merge_opt = false; } else { break; } } if ((graph_run_tgba_opt) && (!echeck_inst || !expect_counter_example)) { std::cerr << argv[0] << ": error: -G requires -e." << std::endl; exit(1); } std::string input; if (file_opt) { tm.start("reading formula"); if (strcmp(argv[formula_index], "-")) { std::ifstream fin(argv[formula_index]); if (!fin) { std::cerr << "Cannot open " << argv[formula_index] << std::endl; exit(2); } if (!std::getline(fin, input, '\0')) { std::cerr << "Cannot read " << argv[formula_index] << std::endl; exit(2); } } else { std::getline(std::cin, input, '\0'); } tm.stop("reading formula"); } else { input = argv[formula_index]; } const spot::ltl::formula* f = 0; if (!from_file) // Reading a formula, not reading an automaton from a file. { switch (translation) { case TransFM: case TransTAA: case TransCompo: { spot::ltl::parse_error_list pel; tm.start("parsing formula"); f = spot::ltl::parse(input, pel, env, debug_opt); tm.stop("parsing formula"); exit_code = spot::ltl::format_parse_errors(std::cerr, input, pel); } break; } } if (f || from_file) { spot::tgba_ptr a = 0; bool assume_sba = false; if (from_file) { switch (readformat) { case ReadDstar: { spot::dstar_parse_error_list pel; tm.start("parsing dstar"); auto daut = spot::dstar_parse(input, pel, dict, env, debug_opt); tm.stop("parsing dstar"); if (spot::format_dstar_parse_errors(std::cerr, input, pel)) return 2; tm.start("dstar2tgba"); if (nra2nba) { if (daut->type == spot::Rabin) { if (dra2dba) a = spot::dstar_to_tgba(daut); else a = spot::nra_to_nba(daut); assert(a->is_sba()); assume_sba = true; } else { a = spot::nsa_to_tgba(daut); assume_sba = false; } } else { a = daut->aut; daut->aut = 0; assume_sba = false; } tm.stop("dstar2tgba"); } break; case ReadHoa: { spot::dstar_parse_error_list pel; tm.start("parsing hoa"); auto daut = spot::hoa_parse(input, pel, dict, env, debug_opt); tm.stop("parsing hoa"); if (spot::format_hoa_parse_errors(std::cerr, input, pel)) return 2; daut->aut->merge_transitions(); a = daut->aut; assume_sba = a->is_sba(); } break; } } else { spot::ltl::ltl_simplifier* simp = 0; if (simpltl) simp = new spot::ltl::ltl_simplifier(redopt, dict); if (simp) { tm.start("reducing formula"); const spot::ltl::formula* t = simp->simplify(f); f->destroy(); tm.stop("reducing formula"); f = t; if (display_reduced_form) { if (utf8_opt) std::cout << spot::ltl::to_utf8_string(f) << std::endl; else std::cout << spot::ltl::to_string(f) << std::endl; } // This helps ltl_to_tgba_fm() to order BDD variables in // a more natural way. simp->clear_as_bdd_cache(); } if (f->is_psl_formula() && !f->is_ltl_formula() && (translation != TransFM && translation != TransCompo)) { std::cerr << "Only the FM algorithm can translate PSL formulae;" << " I'm using it for this formula." << std::endl; translation = TransFM; } tm.start("translating formula"); switch (translation) { case TransFM: a = spot::ltl_to_tgba_fm(f, dict, fm_exprop_opt, fm_symb_merge_opt, post_branching, fair_loop_approx, unobservables, fm_red ? simp : 0); break; case TransCompo: { a = spot::compsusp(f, dict, cs_nowdba, cs_nosimul, cs_early_start, false, cs_wdba_smaller, cs_oblig); break; } case TransTAA: a = spot::ltl_to_taa(f, dict, containment); break; } tm.stop("translating formula"); if (simp && simpcache_stats) { simp->print_stats(std::cerr); bddStat s; bdd_stats(&s); std::cerr << "BDD produced: " << s.produced << "\n nodenum: " << s.nodenum << "\n maxnodenum: " << s.maxnodenum << "\n freenodes: " << s.freenodes << "\n minfreenodes: " << s.minfreenodes << "\n varnum: " << s.varnum << "\n cachesize: " << s.cachesize << "\n gbcnum: " << s.gbcnum << std::endl; bdd_fprintstat(stderr); dict->dump(std::cerr); } delete simp; } if (opt_monitor && !scc_filter) scc_filter = true; // Remove dead SCCs and useless acceptance conditions before // degeneralization. if (scc_filter) { tm.start("SCC-filter"); a = spot::scc_filter(ensure_digraph(a), scc_filter_all); tm.stop("SCC-filter"); assume_sba = false; } bool wdba_minimization_is_success = false; if (opt_minimize) { auto aa = ensure_digraph(a); tm.start("obligation minimization"); auto minimized = minimize_obligation(aa, f, 0, reject_bigger); tm.stop("obligation minimization"); if (!minimized) { // if (!f) { std::cerr << "Error: Without a formula I cannot make " << "sure that the automaton built with -Rm\n" << " is correct." << std::endl; exit(2); } } else if (minimized == aa) { minimized = nullptr; } else { a = minimized; wdba_minimization_is_success = true; // When the minimization succeed, simulation is useless. reduction_dir_sim = false; reduction_rev_sim = false; reduction_iterated_sim = false; assume_sba = true; } } if (reduction_dir_sim && !reduction_iterated_sim) { tm.start("direct simulation"); a = spot::simulation(ensure_digraph(a)); tm.stop("direct simulation"); assume_sba = false; } if (reduction_rev_sim && !reduction_iterated_sim) { tm.start("reverse simulation"); a = spot::cosimulation(ensure_digraph(a)); tm.stop("reverse simulation"); assume_sba = false; } if (reduction_iterated_sim) { tm.start("Reduction w/ iterated simulations"); a = spot::iterated_simulations(ensure_digraph(a)); tm.stop("Reduction w/ iterated simulations"); assume_sba = false; } if (scc_filter && (reduction_dir_sim || reduction_rev_sim)) { tm.start("SCC-filter post-sim"); a = spot::scc_filter(ensure_digraph(a), scc_filter_all); tm.stop("SCC-filter post-sim"); } unsigned int n_acc = a->acc().num_sets(); if (echeck_inst && degeneralize_opt == NoDegen && n_acc > 1 && echeck_inst->max_acceptance_conditions() < n_acc) { degeneralize_opt = DegenTBA; assume_sba = false; } if (!assume_sba && !opt_monitor) { if (degeneralize_opt == DegenTBA) { a = spot::degeneralize_tba(ensure_digraph(a), degen_reset, degen_order, degen_cache); } else if (degeneralize_opt == DegenSBA) { tm.start("degeneralization"); a = spot::degeneralize(ensure_digraph(a), degen_reset, degen_order, degen_cache); tm.stop("degeneralization"); assume_sba = true; } } if (opt_determinize && a->acc().num_sets() <= 1 && (!f || f->is_syntactic_recurrence())) { tm.start("determinization 2"); auto determinized = tba_determinize(ensure_digraph(a), 0, opt_determinize_threshold); tm.stop("determinization 2"); if (determinized) a = determinized; } if (opt_monitor) { tm.start("Monitor minimization"); a = minimize_monitor(ensure_digraph(a)); tm.stop("Monitor minimization"); assume_sba = false; // All states are accepting, so double // circles in the dot output are // pointless. } if (degeneralize_opt != NoDegen || opt_determinize) { if (reduction_dir_sim && !reduction_iterated_sim) { tm.start("direct simulation 2"); a = spot::simulation(ensure_digraph(a)); tm.stop("direct simulation 2"); assume_sba = false; } if (reduction_rev_sim && !reduction_iterated_sim) { tm.start("reverse simulation 2"); a = spot::cosimulation(ensure_digraph(a)); tm.stop("reverse simulation 2"); assume_sba = false; } if (reduction_iterated_sim) { tm.start("Reduction w/ iterated simulations"); a = spot::iterated_simulations(ensure_digraph(a)); tm.stop("Reduction w/ iterated simulations"); assume_sba = false; } } if (opt_complete) { tm.start("determinization"); a = tgba_complete(a); tm.stop("determinization"); } if (opt_dtbasat >= 0) { tm.start("dtbasat"); auto satminimized = dtba_sat_synthetize(ensure_digraph(a), opt_dtbasat); tm.stop("dtbasat"); if (satminimized) a = satminimized; } else if (opt_dtgbasat >= 0) { tm.start("dtgbasat"); auto satminimized = dtgba_sat_minimize(ensure_digraph(a), opt_dtgbasat); tm.stop("dtgbasat"); if (satminimized) a = satminimized; } if (opt_dtgbacomp) { tm.start("DTGBA complement"); a = dtgba_complement(ensure_digraph(a)); tm.stop("DTGBA complement"); } if (opt_determinize || opt_dtgbacomp || opt_dtbasat >= 0 || opt_dtgbasat >= 0) { if (scc_filter && (reduction_dir_sim || reduction_rev_sim)) { tm.start("SCC-filter post-sim"); auto aa = std::dynamic_pointer_cast(a); assert(aa); // Do not filter_all for SBA a = spot::scc_filter(aa, assume_sba ? false : scc_filter_all); tm.stop("SCC-filter post-sim"); } } if (opt_closure) { a = closure(ensure_digraph(a)); } if (opt_stutterize) { a = sl(ensure_digraph(a), f); } if (opt_monitor) { tm.start("Monitor minimization"); a = minimize_monitor(ensure_digraph(a)); tm.stop("Monitor minimization"); assume_sba = false; // All states are accepting, so double // circles in the dot output are // pointless. } switch (dupexp) { case NoneDup: break; case BFS: a = tgba_dupexp_bfs(a, spot::twa::prop_set::all()); break; case DFS: a = tgba_dupexp_dfs(a, spot::twa::prop_set::all()); break; } //TA, STA, GTA, SGTA and TGTA if (ta_opt || tgta_opt) { bdd atomic_props_set_bdd = atomic_prop_collect_as_bdd(f, a); if (ta_opt) { tm.start("conversion to TA"); auto testing_automaton = tgba_to_ta(a, atomic_props_set_bdd, degeneralize_opt == DegenSBA, opt_with_artificial_initial_state, opt_single_pass_emptiness_check, opt_with_artificial_livelock); tm.stop("conversion to TA"); if (opt_bisim_ta) { tm.start("TA bisimulation"); testing_automaton = minimize_ta(testing_automaton); tm.stop("TA bisimulation"); } if (output != -1) { tm.start("producing output"); switch (output) { case 0: spot::dotty_reachable(std::cout, testing_automaton); break; case 12: stats_reachable(testing_automaton).dump(std::cout); break; default: std::cerr << "unsupported output option" << std::endl; exit(1); } tm.stop("producing output"); } a = 0; output = -1; } if (tgta_opt) { auto tgta = tgba_to_tgta(a, atomic_props_set_bdd); if (opt_bisim_ta) { tm.start("TA bisimulation"); a = minimize_tgta(tgta); tm.stop("TA bisimulation"); } else { a = tgta; } if (output != -1) { tm.start("producing output"); switch (output) { case 0: spot::dotty_reachable(std::cout, std::dynamic_pointer_cast (a)->get_ta()); break; case 12: stats_reachable(a).dump(std::cout); break; default: std::cerr << "unsupported output option" << std::endl; exit(1); } tm.stop("producing output"); } output = -1; } } if (system_aut) { a = spot::otf_product(system_aut, a); assume_sba = false; unsigned int n_acc = a->acc().num_sets(); if (echeck_inst && degeneralize_opt == NoDegen && n_acc > 1 && echeck_inst->max_acceptance_conditions() < n_acc) degeneralize_opt = DegenTBA; if (degeneralize_opt == DegenTBA) { tm.start("degeneralize product"); a = spot::degeneralize_tba(ensure_digraph(a), degen_reset, degen_order, degen_cache); tm.stop("degeneralize product"); } else if (degeneralize_opt == DegenSBA) { tm.start("degeneralize product"); a = spot::degeneralize(ensure_digraph(a), degen_reset, degen_order, degen_cache); tm.stop("degeneralize product"); assume_sba = true; } } if (echeck_inst && (a->acc().num_sets() < echeck_inst->min_acceptance_conditions())) { if (!paper_opt) { std::cerr << echeck_algo << " requires at least " << echeck_inst->min_acceptance_conditions() << " acceptance conditions." << std::endl; exit(1); } else { std::cout << std::endl; exit(0); } } if (f) a->set_named_prop("automaton-name", new std::string(to_string(f))); if (output != -1) { tm.start("producing output"); switch (output) { case 0: spot::dotty_reachable(std::cout, a); break; case 5: a->get_dict()->dump(std::cout); break; case 6: spot::lbtt_reachable(std::cout, a); break; case 8: { assert(degeneralize_opt == DegenSBA); if (assume_sba) spot::never_claim_reachable(std::cout, a, opt_never); else { // It is possible that we have applied other // operations to the automaton since its initial // degeneralization. Let's degeneralize again! auto s = spot::degeneralize(ensure_digraph(a), degen_reset, degen_order, degen_cache); spot::never_claim_reachable(std::cout, s, opt_never); } break; } case 10: { auto aa = std::dynamic_pointer_cast(a); if (!aa) dump_scc_dot(a, std::cout, false); else dump_scc_info_dot(std::cout, aa); } break; case 11: { //const spot::tgba_digraph_ptr g = // dynamic_cast(a); //if (!g) dump_scc_dot(a, std::cout, true); //else // dump_scc_info_dot(std::cout, g); } break; case 12: stats_reachable(a).dump(std::cout); break; case 13: sub_stats_reachable(a).dump(std::cout); std::cout << "nondeterministic states: " << count_nondet_states(ensure_digraph(a)) << std::endl; break; case 14: if (!wdba_minimization_is_success) { std::cout << "this is not an obligation property"; auto tmp = tba_determinize_check(ensure_digraph(a), 0, opt_o_threshold, f, 0); if (tmp != 0 && tmp != a) std::cout << ", but it is a recurrence property"; } else { bool g = is_guarantee_automaton(ensure_digraph(a)); bool s = is_safety_mwdba(ensure_digraph(a)); if (g && !s) { std::cout << "this is a guarantee property (hence, " << "an obligation property)"; } else if (s && !g) { std::cout << "this is a safety property (hence, " << "an obligation property)"; } else if (s && g) { std::cout << "this is a guarantee and a safety property" << " (and of course an obligation property)"; } else { std::cout << "this is an obligation property that is " << "neither a safety nor a guarantee"; } } std::cout << std::endl; break; case 15: { spot::scc_info m(ensure_digraph(a)); spot::enumerate_cycles c(m); unsigned max = m.scc_count(); for (unsigned n = 0; n < max; ++n) { std::cout << "Cycles in SCC #" << n << std::endl; c.run(n); } break; } case 16: { spot::scc_info m(ensure_digraph(a)); unsigned max = m.scc_count(); for (unsigned n = 0; n < max; ++n) { bool w = spot::is_weak_scc(m, n); std::cout << "SCC #" << n << (w ? " is weak" : " is not weak") << std::endl; } break; } case 17: { hoa_reachable(std::cout, a, hoa_opt) << '\n'; break; } default: SPOT_UNREACHABLE(); } tm.stop("producing output"); } if (echeck_inst) { auto ec = echeck_inst->instantiate(a); bool search_many = echeck_inst->options().get("repeated"); assert(ec); do { tm.start("running emptiness check"); auto res = ec->check(); tm.stop("running emptiness check"); if (paper_opt) { std::ios::fmtflags old = std::cout.flags(); std::cout << std::left << std::setw(25) << echeck_algo << ", "; spot::tgba_statistics a_size = spot::stats_reachable(ec->automaton()); std::cout << std::right << std::setw(10) << a_size.states << ", " << std::right << std::setw(10) << a_size.transitions << ", "; std::cout << ec->automaton()->acc().num_sets() << ", "; auto ecs = ec->emptiness_check_statistics(); if (ecs) std::cout << std::right << std::setw(10) << ecs->states() << ", " << std::right << std::setw(10) << ecs->transitions() << ", " << std::right << std::setw(10) << ecs->max_depth(); else std::cout << "no stats, , "; if (res) std::cout << ", accepting run found"; else std::cout << ", no accepting run found"; std::cout << std::endl; std::cout << std::setiosflags(old); } else { if (!graph_run_tgba_opt) ec->print_stats(std::cout); if (expect_counter_example != !!res && (!expect_counter_example || ec->safe())) exit_code = 1; if (!res) { std::cout << "no accepting run found"; if (!ec->safe() && expect_counter_example) { std::cout << " even if expected" << std::endl; std::cout << "this may be due to the use of the bit" << " state hashing technique" << std::endl; std::cout << "you can try to increase the heap size " << "or use an explicit storage" << std::endl; } std::cout << std::endl; break; } else if (accepting_run) { tm.start("computing accepting run"); auto run = res->accepting_run(); tm.stop("computing accepting run"); if (!run) { std::cout << "an accepting run exists" << std::endl; } else { if (opt_reduce) { tm.start("reducing accepting run"); run = spot::reduce_run(res->automaton(), run); tm.stop("reducing accepting run"); } if (accepting_run_replay) { tm.start("replaying acc. run"); if (!spot::replay_tgba_run(std::cout, a, run, true)) exit_code = 1; tm.stop("replaying acc. run"); } else { tm.start("printing accepting run"); if (graph_run_tgba_opt) { auto ar = spot::tgba_run_to_tgba(a, run); spot::dotty_reachable(std::cout, ar); } else { spot::print_tgba_run(std::cout, a, run); } tm.stop("printing accepting run"); } } } else { std::cout << "an accepting run exists " << "(use -C to print it)" << std::endl; } } } while (search_many); } if (f) f->destroy(); } else { exit_code = 1; } if (use_timer) tm.print(std::cout); if (unobservables) { for (spot::ltl::atomic_prop_set::iterator i = unobservables->begin(); i != unobservables->end(); ++i) (*i)->destroy(); delete unobservables; } return exit_code; } int main(int argc, char** argv) { int exit_code = checked_main(argc, argv); spot::ltl::atomic_prop::dump_instances(std::cerr); spot::ltl::unop::dump_instances(std::cerr); spot::ltl::binop::dump_instances(std::cerr); spot::ltl::multop::dump_instances(std::cerr); assert(spot::ltl::atomic_prop::instance_count() == 0); assert(spot::ltl::unop::instance_count() == 0); assert(spot::ltl::binop::instance_count() == 0); assert(spot::ltl::multop::instance_count() == 0); return exit_code; }