// -*- coding: utf-8 -*-
// Copyright (C) 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015
// Laboratoire de Recherche et Développement de l'Epita (LRDE).
// Copyright (C) 2003, 2004, 2005, 2006, 2007 Laboratoire
// d'Informatique de Paris 6 (LIP6), département Systèmes Répartis
// Coopératifs (SRC), Université Pierre et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
#include
#include
#include
#include
#include
#include
#include "ltlvisit/tostring.hh"
#include "ltlvisit/apcollect.hh"
#include "ltlast/allnodes.hh"
#include "ltlparse/public.hh"
#include "tgbaalgos/ltl2tgba_fm.hh"
#include "tgbaalgos/ltl2taa.hh"
#include "tgba/bddprint.hh"
#include "tgbaalgos/dotty.hh"
#include "tgbaalgos/lbtt.hh"
#include "tgbaalgos/hoa.hh"
#include "tgbaalgos/degen.hh"
#include "tgba/tgbaproduct.hh"
#include "tgbaalgos/reducerun.hh"
#include "dstarparse/public.hh"
#include "hoaparse/public.hh"
#include "tgbaalgos/dupexp.hh"
#include "tgbaalgos/minimize.hh"
#include "taalgos/minimize.hh"
#include "tgbaalgos/neverclaim.hh"
#include "tgbaalgos/replayrun.hh"
#include "tgbaalgos/sccfilter.hh"
#include "tgbaalgos/safety.hh"
#include "tgbaalgos/gtec/gtec.hh"
#include "misc/timer.hh"
#include "tgbaalgos/stats.hh"
#include "tgbaalgos/sccinfo.hh"
#include "tgbaalgos/emptiness_stats.hh"
#include "tgbaalgos/scc.hh"
#include "tgbaalgos/sccinfo.hh"
#include "tgbaalgos/isdet.hh"
#include "tgbaalgos/cycles.hh"
#include "tgbaalgos/isweakscc.hh"
#include "kripkeparse/public.hh"
#include "tgbaalgos/simulation.hh"
#include "tgbaalgos/compsusp.hh"
#include "tgbaalgos/powerset.hh"
#include "tgbaalgos/dtgbacomp.hh"
#include "tgbaalgos/complete.hh"
#include "tgbaalgos/dtbasat.hh"
#include "tgbaalgos/dtgbasat.hh"
#include "tgbaalgos/stutter.hh"
#include "taalgos/tgba2ta.hh"
#include "taalgos/dotty.hh"
#include "taalgos/stats.hh"
std::string
ltl_defs()
{
std::string s = "\
X=(0 1 true \
1 2 $0 \
accept 2) \
U=(0 0 $0 \
0 1 $1 \
accept 1) \
G=(0 0 $0) \
F=U(true, $0) \
W=G($0)|U($0, $1) \
R=!U(!$0, !$1) \
M=F($0)&R($0, $1)";
return s;
}
void
syntax(char* prog)
{
// Display the supplied name unless it appears to be a libtool wrapper.
char* slash = strrchr(prog, '/');
if (slash && (strncmp(slash + 1, "lt-", 3) == 0))
prog = slash + 4;
std::cerr << "Usage: "<< prog << " [-f|-l|-taa] [OPTIONS...] formula"
<< std::endl
<< " "<< prog << " [-f|-l|-taa] -F [OPTIONS...] file"
<< std::endl
<< " "<< prog << " -XH [OPTIONS...] file" << std::endl
<< std::endl
<< "Translate an LTL formula into an automaton, or read the "
<< "automaton from a file." << std::endl
<< "Optionally multiply this automaton by another"
<< " automaton read from a file." << std::endl
<< "Output the result in various formats, or perform an emptiness "
<< "check." << std::endl
<< std::endl
<< "Input options:" << std::endl
<< " -F read the formula from a file, not from the command line"
<< std::endl
<< " -XD do not compute an automaton, read it from an"
<< " ltl2dstar file" << std::endl
<< " -XDB read the from an ltl2dstar file and convert it to "
<< "TGBA" << std::endl
<< " -XDD read the from an ltl2dstar file and convert it to "
<< "TGBA,\n keeping it deterministic when possible\n"
<< " -XH do not compute an automaton, read it from a"
<< " HOA file\n"
<< " -XL do not compute an automaton, read it from an"
<< " LBTT file" << std::endl
<< " -XN do not compute an automaton, read it from a"
<< " neverclaim file" << std::endl
<< " -Pfile multiply the formula automaton with the TGBA read"
<< " from `file'\n"
<< " -KPfile multiply the formula automaton with the Kripke"
<< " structure from `file'\n"
<< std::endl
<< "Translation algorithm:" << std::endl
<< " -f use Couvreur's FM algorithm for LTL"
<< " (default)" << std::endl
<< " -taa use Tauriainen's TAA-based algorithm for LTL"
<< std::endl
<< " -u use Compositional translation"
<< std::endl
<< std::endl
<< "Options for Couvreur's FM algorithm (-f):" << std::endl
<< " -fr reduce formula at each step of FM" << std::endl
<< " as specified with the -r{1..7} options" << std::endl
<< " -L fair-loop approximation (implies -f)" << std::endl
<< " -p branching postponement (implies -f)" << std::endl
<< " -U[PROPS] consider atomic properties of the formula as "
<< "exclusive events, and" << std::endl
<< " PROPS as unobservables events (implies -f)"
<< std::endl
<< " -x try to produce a more deterministic automaton "
<< "(implies -f)" << std::endl
<< " -y do not merge states with same symbolic representation "
<< "(implies -f)" << std::endl
<< std::endl
<< "Options for Tauriainen's TAA-based algorithm (-taa):"
<< std::endl
<< " -c enable language containment checks (implies -taa)"
<< std::endl
<< std::endl
<< "Formula simplification (before translation):"
<< std::endl
<< " -r1 reduce formula using basic rewriting" << std::endl
<< " -r2 reduce formula using class of eventuality and "
<< "universality" << std::endl
<< " -r3 reduce formula using implication between "
<< "sub-formulae" << std::endl
<< " -r4 reduce formula using all above rules" << std::endl
<< " -r5 reduce formula using tau03" << std::endl
<< " -r6 reduce formula using tau03+" << std::endl
<< " -r7 reduce formula using tau03+ and -r4" << std::endl
<< " -rd display the reduced formula" << std::endl
<< " -rD dump statistics about the simplifier cache" << std::endl
<< " -rL disable basic rewritings producing larger formulas"
<< std::endl
<< " -ru lift formulae that are eventual and universal"
<< std::endl << std::endl
<< "Automaton degeneralization (after translation):"
<< std::endl
<< " -DT degeneralize the automaton as a TBA" << std::endl
<< " -DS degeneralize the automaton as an SBA" << std::endl
<< " (append z/Z, o/O, l/L: to turn on/off options "
<< "(default: zol)\n "
<< " z: level resetting, o: adaptive order, "
<< "l: level cache)\n"
<< std::endl
<< "Automaton simplifications (after translation):"
<< std::endl
<< " -R3 use SCC to reduce the automaton" << std::endl
<< " -R3f clean more acceptance conditions than -R3" << std::endl
<< " "
<< "(prefer -R3 over -R3f if you degeneralize with -D, -DS, or -N)"
<< std::endl
<< " -RDS reduce the automaton with direct simulation"
<< std::endl
<< " -RRS reduce the automaton with reverse simulation"
<< std::endl
<< " -RIS iterate both direct and reverse simulations"
<< std::endl
<< " -Rm attempt to WDBA-minimize the automaton" << std::endl
<< std::endl
<< " -RM attempt to WDBA-minimize the automaton unless the "
<< "result is bigger" << std::endl
<< " -RQ determinize a TGBA (assuming it's legal!)" << std::endl
<< std::endl
<< "Automaton conversion:" << std::endl
<< " -M convert into a deterministic minimal monitor "
<< "(implies -R3 or R3b)" << std::endl
<< " -s convert to explicit automaton, and number states "
<< "in DFS order" << std::endl
<< " -S convert to explicit automaton, and number states "
<< "in BFS order" << std::endl
<< std::endl
<< "Conversion to Testing Automaton:" << std::endl
<< " -TA output a Generalized Testing Automaton (GTA),\n"
<< " or a Testing Automaton (TA) with -DS\n"
<< " -lv add an artificial livelock state to obtain a "
<< "Single-pass (G)TA\n"
<< " -sp convert into a single-pass (G)TA without artificial "
<< "livelock state\n"
<< " -in do not use an artificial initial state\n"
<< " -TGTA output a Transition-based Generalized TA"
<< std::endl
<< " -RT reduce the (G)TA/TGTA using bisimulation.\n"
<< std::endl
<< "Options for performing emptiness checks (on TGBA):" << std::endl
<< " -e[ALGO] run emptiness check, expect and compute an "
<< "accepting run" << std::endl
<< " -E[ALGO] run emptiness check, expect no accepting run"
<< std::endl
<< " -C compute an accepting run (Counterexample) if it exists"
<< std::endl
<< " -CR compute and replay an accepting run (implies -C)"
<< std::endl
<< " -G graph the accepting run seen as an automaton "
<< " (requires -e)" << std::endl
<< " -m try to reduce accepting runs, in a second pass"
<< std::endl
<< "Where ALGO should be one of:" << std::endl
<< " Cou99(OPTIONS) (the default)" << std::endl
<< " CVWY90(OPTIONS)" << std::endl
<< " GV04(OPTIONS)" << std::endl
<< " SE05(OPTIONS)" << std::endl
<< " Tau03(OPTIONS)" << std::endl
<< " Tau03_opt(OPTIONS)" << std::endl
<< std::endl
<< "If no emptiness check is run, the automaton will be output "
<< "in dot format" << std::endl << "by default. This can be "
<< "changed with the following options." << std::endl
<< std::endl
<< "Output options (if no emptiness check):" << std::endl
<< " -ks display statistics on the automaton (size only)"
<< std::endl
<< " -kt display statistics on the automaton (size + "
<< "subtransitions)"
<< std::endl
<< " -K dump the graph of SCCs in dot format" << std::endl
<< " -KV verbosely dump the graph of SCCs in dot format"
<< std::endl
<< " -KC list cycles in automaton" << std::endl
<< " -KW list weak SCCs" << std::endl
<< " -N output the never clain for Spin (implies -DS)"
<< std::endl
<< " -NN output the never clain for Spin, with commented states"
<< " (implies -DS)" << std::endl
<< " -O tell if a formula represents a safety, guarantee, "
<< "or obligation property"
<< std::endl
<< " -t output automaton in LBTT's format" << std::endl
<< std::endl
<< "Miscellaneous options:" << std::endl
<< " -0 produce minimal output dedicated to the paper"
<< std::endl
<< " -8 output UTF-8 formulae" << std::endl
<< " -d turn on traces during parsing" << std::endl
<< " -T time the different phases of the translation"
<< std::endl
<< " -v display the BDD variables used by the automaton"
<< std::endl
<< std::endl;
exit(2);
}
static int
to_int(const char* s)
{
char* endptr;
int res = strtol(s, &endptr, 10);
if (*endptr)
{
std::cerr << "Failed to parse `" << s << "' as an integer." << std::endl;
exit(1);
}
return res;
}
spot::tgba_digraph_ptr ensure_digraph(const spot::tgba_ptr& a)
{
auto aa = std::dynamic_pointer_cast(a);
if (aa)
return aa;
return spot::make_tgba_digraph(a, spot::twa::prop_set::all());
}
int
checked_main(int argc, char** argv)
{
int exit_code = 0;
bool debug_opt = false;
bool paper_opt = false;
bool utf8_opt = false;
enum { NoDegen, DegenTBA, DegenSBA } degeneralize_opt = NoDegen;
enum { TransFM, TransTAA, TransCompo } translation = TransFM;
bool fm_red = false;
bool fm_exprop_opt = false;
bool fm_symb_merge_opt = true;
bool file_opt = false;
bool degen_reset = true;
bool degen_order = false;
bool degen_cache = true;
int output = 0;
int formula_index = 0;
const char* echeck_algo = 0;
spot::emptiness_check_instantiator_ptr echeck_inst = 0;
enum { NoneDup, BFS, DFS } dupexp = NoneDup;
bool expect_counter_example = false;
bool accepting_run = false;
bool accepting_run_replay = false;
bool from_file = false;
enum { ReadDstar, ReadHoa } readformat = ReadHoa;
bool nra2nba = false;
bool dra2dba = false;
bool scc_filter = false;
bool simpltl = false;
spot::ltl::ltl_simplifier_options redopt(false, false, false, false,
false, false, false);
bool simpcache_stats = false;
bool scc_filter_all = false;
bool display_reduced_form = false;
bool post_branching = false;
bool fair_loop_approx = false;
bool graph_run_tgba_opt = false;
bool opt_reduce = false;
bool opt_minimize = false;
bool opt_determinize = false;
unsigned opt_determinize_threshold = 0;
unsigned opt_o_threshold = 0;
bool opt_dtgbacomp = false;
bool reject_bigger = false;
bool opt_monitor = false;
bool containment = false;
bool opt_closure = false;
bool opt_stutterize = false;
const char* opt_never = nullptr;
const char* hoa_opt = nullptr;
auto& env = spot::ltl::default_environment::instance();
spot::ltl::atomic_prop_set* unobservables = 0;
spot::tgba_ptr system_aut = 0;
auto dict = spot::make_bdd_dict();
spot::timer_map tm;
bool use_timer = false;
bool reduction_dir_sim = false;
bool reduction_rev_sim = false;
bool reduction_iterated_sim = false;
bool opt_bisim_ta = false;
bool ta_opt = false;
bool tgta_opt = false;
bool opt_with_artificial_initial_state = true;
bool opt_single_pass_emptiness_check = false;
bool opt_with_artificial_livelock = false;
bool cs_nowdba = true;
bool cs_wdba_smaller = false;
bool cs_nosimul = true;
bool cs_early_start = false;
bool cs_oblig = false;
bool opt_complete = false;
int opt_dtbasat = -1;
int opt_dtgbasat = -1;
for (;;)
{
if (argc < formula_index + 2)
syntax(argv[0]);
++formula_index;
if (!strcmp(argv[formula_index], "-0"))
{
paper_opt = true;
}
else if (!strcmp(argv[formula_index], "-8"))
{
utf8_opt = true;
spot::enable_utf8();
}
else if (!strcmp(argv[formula_index], "-c"))
{
containment = true;
translation = TransTAA;
}
else if (!strcmp(argv[formula_index], "-C"))
{
accepting_run = true;
}
else if (!strcmp(argv[formula_index], "-CR"))
{
accepting_run = true;
accepting_run_replay = true;
}
else if (!strcmp(argv[formula_index], "-d"))
{
debug_opt = true;
}
else if (!strcmp(argv[formula_index], "-D"))
{
std::cerr << "-D was renamed to -DT\n";
abort();
}
else if (!strcmp(argv[formula_index], "-DC"))
{
opt_dtgbacomp = true;
}
else if (!strncmp(argv[formula_index], "-DS", 3)
|| !strncmp(argv[formula_index], "-DT", 3))
{
degeneralize_opt =
argv[formula_index][2] == 'S' ? DegenSBA : DegenTBA;
const char* p = argv[formula_index] + 3;
while (*p)
{
switch (*p++)
{
case 'o':
degen_order = true;
break;
case 'O':
degen_order = false;
break;
case 'z':
degen_reset = true;
break;
case 'Z':
degen_reset = false;
break;
case 'l':
degen_cache = true;
break;
case 'L':
degen_cache = false;
break;
}
}
}
else if (!strncmp(argv[formula_index], "-e", 2))
{
echeck_algo = 2 + argv[formula_index];
if (!*echeck_algo)
echeck_algo = "Cou99";
const char* err;
echeck_inst =
spot::make_emptiness_check_instantiator(echeck_algo, &err);
if (!echeck_inst)
{
std::cerr << "Failed to parse argument of -e near `"
<< err << '\'' << std::endl;
exit(2);
}
expect_counter_example = true;
output = -1;
}
else if (!strncmp(argv[formula_index], "-E", 2))
{
const char* echeck_algo = 2 + argv[formula_index];
if (!*echeck_algo)
echeck_algo = "Cou99";
const char* err;
echeck_inst =
spot::make_emptiness_check_instantiator(echeck_algo, &err);
if (!echeck_inst)
{
std::cerr << "Failed to parse argument of -e near `"
<< err << '\'' << std::endl;
exit(2);
}
expect_counter_example = false;
output = -1;
}
else if (!strcmp(argv[formula_index], "-f"))
{
translation = TransFM;
}
else if (!strcmp(argv[formula_index], "-fr"))
{
fm_red = true;
translation = TransFM;
}
else if (!strcmp(argv[formula_index], "-F"))
{
file_opt = true;
}
else if (!strcmp(argv[formula_index], "-G"))
{
accepting_run = true;
graph_run_tgba_opt = true;
}
else if (!strncmp(argv[formula_index], "-H", 2))
{
output = 17;
hoa_opt = argv[formula_index] + 2;
}
else if (!strcmp(argv[formula_index], "-ks"))
{
output = 12;
}
else if (!strcmp(argv[formula_index], "-kt"))
{
output = 13;
}
else if (!strcmp(argv[formula_index], "-K"))
{
output = 10;
}
else if (!strncmp(argv[formula_index], "-KP", 3))
{
tm.start("reading -KP's argument");
spot::kripke_parse_error_list pel;
system_aut = spot::kripke_parse(argv[formula_index] + 3,
pel, dict, env, debug_opt);
if (spot::format_kripke_parse_errors(std::cerr,
argv[formula_index] + 2, pel))
return 2;
tm.stop("reading -KP's argument");
}
else if (!strcmp(argv[formula_index], "-KV"))
{
output = 11;
}
else if (!strcmp(argv[formula_index], "-KC"))
{
output = 15;
}
else if (!strcmp(argv[formula_index], "-KW"))
{
output = 16;
}
else if (!strcmp(argv[formula_index], "-L"))
{
fair_loop_approx = true;
translation = TransFM;
}
else if (!strcmp(argv[formula_index], "-m"))
{
opt_reduce = true;
}
else if (!strcmp(argv[formula_index], "-N"))
{
degeneralize_opt = DegenSBA;
output = 8;
opt_never = nullptr;
}
else if (!strcmp(argv[formula_index], "-NN"))
{
degeneralize_opt = DegenSBA;
output = 8;
opt_never = "c";
}
else if (!strncmp(argv[formula_index], "-O", 2))
{
output = 14;
opt_minimize = true;
if (argv[formula_index][2] != 0)
opt_o_threshold = to_int(argv[formula_index] + 2);
}
else if (!strcmp(argv[formula_index], "-p"))
{
post_branching = true;
translation = TransFM;
}
else if (!strncmp(argv[formula_index], "-P", 2))
{
tm.start("reading -P's argument");
spot::dstar_parse_error_list pel;
auto daut = spot::hoa_parse(argv[formula_index] + 2, pel,
dict, env, debug_opt);
if (spot::format_hoa_parse_errors(std::cerr,
argv[formula_index] + 2, pel))
return 2;
daut->aut->merge_transitions();
system_aut = daut->aut;
tm.stop("reading -P's argument");
}
else if (!strcmp(argv[formula_index], "-r1"))
{
simpltl = true;
redopt.reduce_basics = true;
}
else if (!strcmp(argv[formula_index], "-r2"))
{
simpltl = true;
redopt.event_univ = true;
}
else if (!strcmp(argv[formula_index], "-r3"))
{
simpltl = true;
redopt.synt_impl = true;
}
else if (!strcmp(argv[formula_index], "-r4"))
{
simpltl = true;
redopt.reduce_basics = true;
redopt.event_univ = true;
redopt.synt_impl = true;
}
else if (!strcmp(argv[formula_index], "-r5"))
{
simpltl = true;
redopt.containment_checks = true;
}
else if (!strcmp(argv[formula_index], "-r6"))
{
simpltl = true;
redopt.containment_checks = true;
redopt.containment_checks_stronger = true;
}
else if (!strcmp(argv[formula_index], "-r7"))
{
simpltl = true;
redopt.reduce_basics = true;
redopt.event_univ = true;
redopt.synt_impl = true;
redopt.containment_checks = true;
redopt.containment_checks_stronger = true;
}
else if (!strcmp(argv[formula_index], "-R1q")
|| !strcmp(argv[formula_index], "-R1t")
|| !strcmp(argv[formula_index], "-R2q")
|| !strcmp(argv[formula_index], "-R2t"))
{
// For backward compatibility, make all these options
// equal to -RDS.
reduction_dir_sim = true;
}
else if (!strcmp(argv[formula_index], "-RRS"))
{
reduction_rev_sim = true;
}
else if (!strcmp(argv[formula_index], "-R3"))
{
scc_filter = true;
}
else if (!strcmp(argv[formula_index], "-R3f"))
{
scc_filter = true;
scc_filter_all = true;
}
else if (!strcmp(argv[formula_index], "-rd"))
{
display_reduced_form = true;
}
else if (!strcmp(argv[formula_index], "-rD"))
{
simpcache_stats = true;
}
else if (!strcmp(argv[formula_index], "-RC"))
{
opt_complete = true;
}
else if (!strcmp(argv[formula_index], "-RDS"))
{
reduction_dir_sim = true;
}
else if (!strcmp(argv[formula_index], "-RIS"))
{
reduction_iterated_sim = true;
}
else if (!strcmp(argv[formula_index], "-rL"))
{
simpltl = true;
redopt.reduce_basics = true;
redopt.reduce_size_strictly = true;
}
else if (!strncmp(argv[formula_index], "-RG", 3))
{
if (argv[formula_index][3] != 0)
opt_dtgbasat = to_int(argv[formula_index] + 3);
else
opt_dtgbasat = 0;
//output = -1;
}
else if (!strcmp(argv[formula_index], "-Rm"))
{
opt_minimize = true;
}
else if (!strcmp(argv[formula_index], "-RM"))
{
opt_minimize = true;
reject_bigger = true;
}
else if (!strncmp(argv[formula_index], "-RQ", 3))
{
opt_determinize = true;
if (argv[formula_index][3] != 0)
opt_determinize_threshold = to_int(argv[formula_index] + 3);
}
else if (!strncmp(argv[formula_index], "-RS", 3))
{
if (argv[formula_index][3] != 0)
opt_dtbasat = to_int(argv[formula_index] + 3);
else
opt_dtbasat = 0;
//output = -1;
}
else if (!strcmp(argv[formula_index], "-RT"))
{
opt_bisim_ta = true;
}
else if (!strcmp(argv[formula_index], "-ru"))
{
simpltl = true;
redopt.event_univ = true;
redopt.favor_event_univ = true;
}
else if (!strcmp(argv[formula_index], "-M"))
{
opt_monitor = true;
}
else if (!strcmp(argv[formula_index], "-s"))
{
dupexp = DFS;
}
else if (!strcmp(argv[formula_index], "-S"))
{
dupexp = BFS;
}
else if (!strcmp(argv[formula_index], "-CL"))
{
opt_closure = true;
}
else if (!strcmp(argv[formula_index], "-ST"))
{
opt_stutterize = true;
}
else if (!strcmp(argv[formula_index], "-t"))
{
output = 6;
}
else if (!strcmp(argv[formula_index], "-T"))
{
use_timer = true;
}
else if (!strcmp(argv[formula_index], "-TA"))
{
ta_opt = true;
}
else if (!strcmp(argv[formula_index], "-TGTA"))
{
tgta_opt = true;
}
else if (!strcmp(argv[formula_index], "-lv"))
{
opt_with_artificial_livelock = true;
}
else if (!strcmp(argv[formula_index], "-sp"))
{
opt_single_pass_emptiness_check = true;
}
else if (!strcmp(argv[formula_index], "-in"))
{
opt_with_artificial_initial_state = false;
}
else if (!strcmp(argv[formula_index], "-taa"))
{
translation = TransTAA;
}
else if (!strncmp(argv[formula_index], "-U", 2))
{
unobservables = new spot::ltl::atomic_prop_set;
translation = TransFM;
// Parse -U's argument.
const char* tok = strtok(argv[formula_index] + 2, ", \t;");
while (tok)
{
unobservables->insert(env.require(tok));
tok = strtok(0, ", \t;");
}
}
else if (!strncmp(argv[formula_index], "-u", 2))
{
translation = TransCompo;
const char* c = argv[formula_index] + 2;
while (*c != 0)
{
switch (*c)
{
case '2':
cs_nowdba = false;
cs_wdba_smaller = true;
break;
case 'w':
cs_nowdba = false;
cs_wdba_smaller = false;
break;
case 's':
cs_nosimul = false;
break;
case 'e':
cs_early_start = true;
break;
case 'W':
cs_nowdba = true;
break;
case 'S':
cs_nosimul = true;
break;
case 'E':
cs_early_start = false;
break;
case 'o':
cs_oblig = true;
break;
case 'O':
cs_oblig = false;
break;
default:
std::cerr << "Unknown suboption `" << *c
<< "' for option -u" << std::endl;
}
++c;
}
}
else if (!strcmp(argv[formula_index], "-v"))
{
output = 5;
}
else if (!strcmp(argv[formula_index], "-x"))
{
translation = TransFM;
fm_exprop_opt = true;
}
else if (!strcmp(argv[formula_index], "-XD"))
{
from_file = true;
readformat = ReadDstar;
}
else if (!strcmp(argv[formula_index], "-XDB"))
{
from_file = true;
readformat = ReadDstar;
nra2nba = true;
}
else if (!strcmp(argv[formula_index], "-XDD"))
{
from_file = true;
readformat = ReadDstar;
nra2nba = true;
dra2dba = true;
}
else if (!strcmp(argv[formula_index], "-XH"))
{
from_file = true;
readformat = ReadHoa;
}
else if (!strcmp(argv[formula_index], "-XL"))
{
from_file = true;
readformat = ReadHoa;
}
else if (!strcmp(argv[formula_index], "-XN")) // now synonym for -XH
{
from_file = true;
readformat = ReadHoa;
}
else if (!strcmp(argv[formula_index], "-y"))
{
translation = TransFM;
fm_symb_merge_opt = false;
}
else
{
break;
}
}
if ((graph_run_tgba_opt)
&& (!echeck_inst || !expect_counter_example))
{
std::cerr << argv[0] << ": error: -G requires -e." << std::endl;
exit(1);
}
std::string input;
if (file_opt)
{
tm.start("reading formula");
if (strcmp(argv[formula_index], "-"))
{
std::ifstream fin(argv[formula_index]);
if (!fin)
{
std::cerr << "Cannot open " << argv[formula_index] << std::endl;
exit(2);
}
if (!std::getline(fin, input, '\0'))
{
std::cerr << "Cannot read " << argv[formula_index] << std::endl;
exit(2);
}
}
else
{
std::getline(std::cin, input, '\0');
}
tm.stop("reading formula");
}
else
{
input = argv[formula_index];
}
const spot::ltl::formula* f = 0;
if (!from_file) // Reading a formula, not reading an automaton from a file.
{
switch (translation)
{
case TransFM:
case TransTAA:
case TransCompo:
{
spot::ltl::parse_error_list pel;
tm.start("parsing formula");
f = spot::ltl::parse(input, pel, env, debug_opt);
tm.stop("parsing formula");
exit_code = spot::ltl::format_parse_errors(std::cerr, input, pel);
}
break;
}
}
if (f || from_file)
{
spot::tgba_ptr a = 0;
bool assume_sba = false;
if (from_file)
{
switch (readformat)
{
case ReadDstar:
{
spot::dstar_parse_error_list pel;
tm.start("parsing dstar");
auto daut = spot::dstar_parse(input, pel, dict, env, debug_opt);
tm.stop("parsing dstar");
if (spot::format_dstar_parse_errors(std::cerr, input, pel))
return 2;
tm.start("dstar2tgba");
if (nra2nba)
{
if (daut->type == spot::Rabin)
{
if (dra2dba)
a = spot::dstar_to_tgba(daut);
else
a = spot::nra_to_nba(daut);
assert(a->is_sba());
assume_sba = true;
}
else
{
a = spot::nsa_to_tgba(daut);
assume_sba = false;
}
}
else
{
a = daut->aut;
daut->aut = 0;
assume_sba = false;
}
tm.stop("dstar2tgba");
}
break;
case ReadHoa:
{
spot::dstar_parse_error_list pel;
tm.start("parsing hoa");
auto daut = spot::hoa_parse(input, pel, dict, env, debug_opt);
tm.stop("parsing hoa");
if (spot::format_hoa_parse_errors(std::cerr, input, pel))
return 2;
daut->aut->merge_transitions();
a = daut->aut;
assume_sba = a->is_sba();
}
break;
}
}
else
{
spot::ltl::ltl_simplifier* simp = 0;
if (simpltl)
simp = new spot::ltl::ltl_simplifier(redopt, dict);
if (simp)
{
tm.start("reducing formula");
const spot::ltl::formula* t = simp->simplify(f);
f->destroy();
tm.stop("reducing formula");
f = t;
if (display_reduced_form)
{
if (utf8_opt)
std::cout << spot::ltl::to_utf8_string(f) << std::endl;
else
std::cout << spot::ltl::to_string(f) << std::endl;
}
// This helps ltl_to_tgba_fm() to order BDD variables in
// a more natural way.
simp->clear_as_bdd_cache();
}
if (f->is_psl_formula()
&& !f->is_ltl_formula()
&& (translation != TransFM && translation != TransCompo))
{
std::cerr << "Only the FM algorithm can translate PSL formulae;"
<< " I'm using it for this formula." << std::endl;
translation = TransFM;
}
tm.start("translating formula");
switch (translation)
{
case TransFM:
a = spot::ltl_to_tgba_fm(f, dict, fm_exprop_opt,
fm_symb_merge_opt,
post_branching,
fair_loop_approx,
unobservables,
fm_red ? simp : 0);
break;
case TransCompo:
{
a = spot::compsusp(f, dict,
cs_nowdba, cs_nosimul, cs_early_start,
false, cs_wdba_smaller, cs_oblig);
break;
}
case TransTAA:
a = spot::ltl_to_taa(f, dict, containment);
break;
}
tm.stop("translating formula");
if (simp && simpcache_stats)
{
simp->print_stats(std::cerr);
bddStat s;
bdd_stats(&s);
std::cerr << "BDD produced: " << s.produced
<< "\n nodenum: " << s.nodenum
<< "\n maxnodenum: " << s.maxnodenum
<< "\n freenodes: " << s.freenodes
<< "\n minfreenodes: " << s.minfreenodes
<< "\n varnum: " << s.varnum
<< "\n cachesize: " << s.cachesize
<< "\n gbcnum: " << s.gbcnum
<< std::endl;
bdd_fprintstat(stderr);
dict->dump(std::cerr);
}
delete simp;
}
if (opt_monitor && !scc_filter)
scc_filter = true;
// Remove dead SCCs and useless acceptance conditions before
// degeneralization.
if (scc_filter)
{
tm.start("SCC-filter");
a = spot::scc_filter(ensure_digraph(a), scc_filter_all);
tm.stop("SCC-filter");
assume_sba = false;
}
bool wdba_minimization_is_success = false;
if (opt_minimize)
{
auto aa = ensure_digraph(a);
tm.start("obligation minimization");
auto minimized = minimize_obligation(aa,
f, 0, reject_bigger);
tm.stop("obligation minimization");
if (!minimized)
{
// if (!f)
{
std::cerr << "Error: Without a formula I cannot make "
<< "sure that the automaton built with -Rm\n"
<< " is correct." << std::endl;
exit(2);
}
}
else if (minimized == aa)
{
minimized = nullptr;
}
else
{
a = minimized;
wdba_minimization_is_success = true;
// When the minimization succeed, simulation is useless.
reduction_dir_sim = false;
reduction_rev_sim = false;
reduction_iterated_sim = false;
assume_sba = true;
}
}
if (reduction_dir_sim && !reduction_iterated_sim)
{
tm.start("direct simulation");
a = spot::simulation(ensure_digraph(a));
tm.stop("direct simulation");
assume_sba = false;
}
if (reduction_rev_sim && !reduction_iterated_sim)
{
tm.start("reverse simulation");
a = spot::cosimulation(ensure_digraph(a));
tm.stop("reverse simulation");
assume_sba = false;
}
if (reduction_iterated_sim)
{
tm.start("Reduction w/ iterated simulations");
a = spot::iterated_simulations(ensure_digraph(a));
tm.stop("Reduction w/ iterated simulations");
assume_sba = false;
}
if (scc_filter && (reduction_dir_sim || reduction_rev_sim))
{
tm.start("SCC-filter post-sim");
a = spot::scc_filter(ensure_digraph(a), scc_filter_all);
tm.stop("SCC-filter post-sim");
}
unsigned int n_acc = a->acc().num_sets();
if (echeck_inst
&& degeneralize_opt == NoDegen
&& n_acc > 1
&& echeck_inst->max_acceptance_conditions() < n_acc)
{
degeneralize_opt = DegenTBA;
assume_sba = false;
}
if (!assume_sba && !opt_monitor)
{
if (degeneralize_opt == DegenTBA)
{
a = spot::degeneralize_tba(ensure_digraph(a),
degen_reset, degen_order, degen_cache);
}
else if (degeneralize_opt == DegenSBA)
{
tm.start("degeneralization");
a = spot::degeneralize(ensure_digraph(a),
degen_reset, degen_order, degen_cache);
tm.stop("degeneralization");
assume_sba = true;
}
}
if (opt_determinize && a->acc().num_sets() <= 1
&& (!f || f->is_syntactic_recurrence()))
{
tm.start("determinization 2");
auto determinized = tba_determinize(ensure_digraph(a), 0,
opt_determinize_threshold);
tm.stop("determinization 2");
if (determinized)
a = determinized;
}
if (opt_monitor)
{
tm.start("Monitor minimization");
a = minimize_monitor(ensure_digraph(a));
tm.stop("Monitor minimization");
assume_sba = false; // All states are accepting, so double
// circles in the dot output are
// pointless.
}
if (degeneralize_opt != NoDegen || opt_determinize)
{
if (reduction_dir_sim && !reduction_iterated_sim)
{
tm.start("direct simulation 2");
a = spot::simulation(ensure_digraph(a));
tm.stop("direct simulation 2");
assume_sba = false;
}
if (reduction_rev_sim && !reduction_iterated_sim)
{
tm.start("reverse simulation 2");
a = spot::cosimulation(ensure_digraph(a));
tm.stop("reverse simulation 2");
assume_sba = false;
}
if (reduction_iterated_sim)
{
tm.start("Reduction w/ iterated simulations");
a = spot::iterated_simulations(ensure_digraph(a));
tm.stop("Reduction w/ iterated simulations");
assume_sba = false;
}
}
if (opt_complete)
{
tm.start("determinization");
a = tgba_complete(a);
tm.stop("determinization");
}
if (opt_dtbasat >= 0)
{
tm.start("dtbasat");
auto satminimized =
dtba_sat_synthetize(ensure_digraph(a), opt_dtbasat);
tm.stop("dtbasat");
if (satminimized)
a = satminimized;
}
else if (opt_dtgbasat >= 0)
{
tm.start("dtgbasat");
auto satminimized = dtgba_sat_minimize(ensure_digraph(a),
opt_dtgbasat);
tm.stop("dtgbasat");
if (satminimized)
a = satminimized;
}
if (opt_dtgbacomp)
{
tm.start("DTGBA complement");
a = dtgba_complement(ensure_digraph(a));
tm.stop("DTGBA complement");
}
if (opt_determinize || opt_dtgbacomp || opt_dtbasat >= 0
|| opt_dtgbasat >= 0)
{
if (scc_filter && (reduction_dir_sim || reduction_rev_sim))
{
tm.start("SCC-filter post-sim");
auto aa = std::dynamic_pointer_cast(a);
assert(aa);
// Do not filter_all for SBA
a = spot::scc_filter(aa, assume_sba ?
false : scc_filter_all);
tm.stop("SCC-filter post-sim");
}
}
if (opt_closure)
{
a = closure(ensure_digraph(a));
}
if (opt_stutterize)
{
a = sl(ensure_digraph(a), f);
}
if (opt_monitor)
{
tm.start("Monitor minimization");
a = minimize_monitor(ensure_digraph(a));
tm.stop("Monitor minimization");
assume_sba = false; // All states are accepting, so double
// circles in the dot output are
// pointless.
}
switch (dupexp)
{
case NoneDup:
break;
case BFS:
a = tgba_dupexp_bfs(a, spot::twa::prop_set::all());
break;
case DFS:
a = tgba_dupexp_dfs(a, spot::twa::prop_set::all());
break;
}
//TA, STA, GTA, SGTA and TGTA
if (ta_opt || tgta_opt)
{
bdd atomic_props_set_bdd = atomic_prop_collect_as_bdd(f, a);
if (ta_opt)
{
tm.start("conversion to TA");
auto testing_automaton
= tgba_to_ta(a, atomic_props_set_bdd, degeneralize_opt
== DegenSBA, opt_with_artificial_initial_state,
opt_single_pass_emptiness_check,
opt_with_artificial_livelock);
tm.stop("conversion to TA");
if (opt_bisim_ta)
{
tm.start("TA bisimulation");
testing_automaton = minimize_ta(testing_automaton);
tm.stop("TA bisimulation");
}
if (output != -1)
{
tm.start("producing output");
switch (output)
{
case 0:
spot::dotty_reachable(std::cout, testing_automaton);
break;
case 12:
stats_reachable(testing_automaton).dump(std::cout);
break;
default:
std::cerr << "unsupported output option" << std::endl;
exit(1);
}
tm.stop("producing output");
}
a = 0;
output = -1;
}
if (tgta_opt)
{
auto tgta = tgba_to_tgta(a, atomic_props_set_bdd);
if (opt_bisim_ta)
{
tm.start("TA bisimulation");
a = minimize_tgta(tgta);
tm.stop("TA bisimulation");
}
else
{
a = tgta;
}
if (output != -1)
{
tm.start("producing output");
switch (output)
{
case 0:
spot::dotty_reachable(std::cout, std::dynamic_pointer_cast
(a)->get_ta());
break;
case 12:
stats_reachable(a).dump(std::cout);
break;
default:
std::cerr << "unsupported output option" << std::endl;
exit(1);
}
tm.stop("producing output");
}
output = -1;
}
}
if (system_aut)
{
a = spot::otf_product(system_aut, a);
assume_sba = false;
unsigned int n_acc = a->acc().num_sets();
if (echeck_inst
&& degeneralize_opt == NoDegen
&& n_acc > 1
&& echeck_inst->max_acceptance_conditions() < n_acc)
degeneralize_opt = DegenTBA;
if (degeneralize_opt == DegenTBA)
{
tm.start("degeneralize product");
a = spot::degeneralize_tba(ensure_digraph(a),
degen_reset,
degen_order,
degen_cache);
tm.stop("degeneralize product");
}
else if (degeneralize_opt == DegenSBA)
{
tm.start("degeneralize product");
a = spot::degeneralize(ensure_digraph(a),
degen_reset,
degen_order,
degen_cache);
tm.stop("degeneralize product");
assume_sba = true;
}
}
if (echeck_inst
&& (a->acc().num_sets() < echeck_inst->min_acceptance_conditions()))
{
if (!paper_opt)
{
std::cerr << echeck_algo << " requires at least "
<< echeck_inst->min_acceptance_conditions()
<< " acceptance conditions." << std::endl;
exit(1);
}
else
{
std::cout << std::endl;
exit(0);
}
}
if (f)
a->set_named_prop("automaton-name", new std::string(to_string(f)));
if (output != -1)
{
tm.start("producing output");
switch (output)
{
case 0:
spot::dotty_reachable(std::cout, a);
break;
case 5:
a->get_dict()->dump(std::cout);
break;
case 6:
spot::lbtt_reachable(std::cout, a);
break;
case 8:
{
assert(degeneralize_opt == DegenSBA);
if (assume_sba)
spot::never_claim_reachable(std::cout, a, opt_never);
else
{
// It is possible that we have applied other
// operations to the automaton since its initial
// degeneralization. Let's degeneralize again!
auto s = spot::degeneralize(ensure_digraph(a), degen_reset,
degen_order, degen_cache);
spot::never_claim_reachable(std::cout, s, opt_never);
}
break;
}
case 10:
{
auto aa =
std::dynamic_pointer_cast(a);
if (!aa)
dump_scc_dot(a, std::cout, false);
else
dump_scc_info_dot(std::cout, aa);
}
break;
case 11:
{
//const spot::tgba_digraph_ptr g =
// dynamic_cast(a);
//if (!g)
dump_scc_dot(a, std::cout, true);
//else
// dump_scc_info_dot(std::cout, g);
}
break;
case 12:
stats_reachable(a).dump(std::cout);
break;
case 13:
sub_stats_reachable(a).dump(std::cout);
std::cout << "nondeterministic states: "
<< count_nondet_states(ensure_digraph(a)) << std::endl;
break;
case 14:
if (!wdba_minimization_is_success)
{
std::cout << "this is not an obligation property";
auto tmp = tba_determinize_check(ensure_digraph(a),
0, opt_o_threshold, f, 0);
if (tmp != 0 && tmp != a)
std::cout << ", but it is a recurrence property";
}
else
{
bool g = is_guarantee_automaton(ensure_digraph(a));
bool s = is_safety_mwdba(ensure_digraph(a));
if (g && !s)
{
std::cout << "this is a guarantee property (hence, "
<< "an obligation property)";
}
else if (s && !g)
{
std::cout << "this is a safety property (hence, "
<< "an obligation property)";
}
else if (s && g)
{
std::cout << "this is a guarantee and a safety property"
<< " (and of course an obligation property)";
}
else
{
std::cout << "this is an obligation property that is "
<< "neither a safety nor a guarantee";
}
}
std::cout << std::endl;
break;
case 15:
{
spot::scc_info m(ensure_digraph(a));
spot::enumerate_cycles c(m);
unsigned max = m.scc_count();
for (unsigned n = 0; n < max; ++n)
{
std::cout << "Cycles in SCC #" << n << std::endl;
c.run(n);
}
break;
}
case 16:
{
spot::scc_info m(ensure_digraph(a));
unsigned max = m.scc_count();
for (unsigned n = 0; n < max; ++n)
{
bool w = spot::is_weak_scc(m, n);
std::cout << "SCC #" << n
<< (w ? " is weak" : " is not weak")
<< std::endl;
}
break;
}
case 17:
{
hoa_reachable(std::cout, a, hoa_opt) << '\n';
break;
}
default:
SPOT_UNREACHABLE();
}
tm.stop("producing output");
}
if (echeck_inst)
{
auto ec = echeck_inst->instantiate(a);
bool search_many = echeck_inst->options().get("repeated");
assert(ec);
do
{
tm.start("running emptiness check");
auto res = ec->check();
tm.stop("running emptiness check");
if (paper_opt)
{
std::ios::fmtflags old = std::cout.flags();
std::cout << std::left << std::setw(25)
<< echeck_algo << ", ";
spot::tgba_statistics a_size =
spot::stats_reachable(ec->automaton());
std::cout << std::right << std::setw(10)
<< a_size.states << ", "
<< std::right << std::setw(10)
<< a_size.transitions << ", ";
std::cout << ec->automaton()->acc().num_sets()
<< ", ";
auto ecs = ec->emptiness_check_statistics();
if (ecs)
std::cout << std::right << std::setw(10)
<< ecs->states() << ", "
<< std::right << std::setw(10)
<< ecs->transitions() << ", "
<< std::right << std::setw(10)
<< ecs->max_depth();
else
std::cout << "no stats, , ";
if (res)
std::cout << ", accepting run found";
else
std::cout << ", no accepting run found";
std::cout << std::endl;
std::cout << std::setiosflags(old);
}
else
{
if (!graph_run_tgba_opt)
ec->print_stats(std::cout);
if (expect_counter_example != !!res &&
(!expect_counter_example || ec->safe()))
exit_code = 1;
if (!res)
{
std::cout << "no accepting run found";
if (!ec->safe() && expect_counter_example)
{
std::cout << " even if expected" << std::endl;
std::cout << "this may be due to the use of the bit"
<< " state hashing technique" << std::endl;
std::cout << "you can try to increase the heap size "
<< "or use an explicit storage"
<< std::endl;
}
std::cout << std::endl;
break;
}
else if (accepting_run)
{
tm.start("computing accepting run");
auto run = res->accepting_run();
tm.stop("computing accepting run");
if (!run)
{
std::cout << "an accepting run exists" << std::endl;
}
else
{
if (opt_reduce)
{
tm.start("reducing accepting run");
run = spot::reduce_run(res->automaton(), run);
tm.stop("reducing accepting run");
}
if (accepting_run_replay)
{
tm.start("replaying acc. run");
if (!spot::replay_tgba_run(std::cout, a,
run, true))
exit_code = 1;
tm.stop("replaying acc. run");
}
else
{
tm.start("printing accepting run");
if (graph_run_tgba_opt)
{
auto ar = spot::tgba_run_to_tgba(a, run);
spot::dotty_reachable(std::cout, ar);
}
else
{
spot::print_tgba_run(std::cout, a, run);
}
tm.stop("printing accepting run");
}
}
}
else
{
std::cout << "an accepting run exists "
<< "(use -C to print it)" << std::endl;
}
}
}
while (search_many);
}
if (f)
f->destroy();
}
else
{
exit_code = 1;
}
if (use_timer)
tm.print(std::cout);
if (unobservables)
{
for (spot::ltl::atomic_prop_set::iterator i =
unobservables->begin(); i != unobservables->end(); ++i)
(*i)->destroy();
delete unobservables;
}
return exit_code;
}
int
main(int argc, char** argv)
{
int exit_code = checked_main(argc, argv);
spot::ltl::atomic_prop::dump_instances(std::cerr);
spot::ltl::unop::dump_instances(std::cerr);
spot::ltl::binop::dump_instances(std::cerr);
spot::ltl::multop::dump_instances(std::cerr);
assert(spot::ltl::atomic_prop::instance_count() == 0);
assert(spot::ltl::unop::instance_count() == 0);
assert(spot::ltl::binop::instance_count() == 0);
assert(spot::ltl::multop::instance_count() == 0);
return exit_code;
}