// -*- coding: utf-8 -*-
// Copyright (C) 2011, 2013, 2014, 2015, 2016, 2018 Laboratoire de recherche
// et développement de l'Epita (LRDE).
// Copyright (C) 2004, 2005, 2006 Laboratoire d'Informatique de Paris
// 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
// Université Pierre et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
#pragma once
//#define NDFSR_TRACE
#include
#ifdef NDFSR_TRACE
#define ndfsr_trace std::cerr
#else
#define ndfsr_trace while (0) std::cerr
#endif
#include
#include
#include
#include
#include
#include
#include
namespace spot
{
struct stack_item
{
stack_item(const state* n, twa_succ_iterator* i, bdd l, acc_cond::mark_t a)
noexcept : s(n), it(i), label(l), acc(a) {};
/// The visited state.
const state* s;
/// Design the next successor of \a s which has to be visited.
twa_succ_iterator* it;
/// The label of the transition traversed to reach \a s
/// (false for the first one).
bdd label;
/// The acceptance set of the transition traversed to reach \a s
/// (false for the first one).
acc_cond::mark_t acc;
};
typedef std::list stack_type;
namespace
{
// The acss_statistics is available only when the heap has a
// size() method (which we indicate using n==1).
template
struct stats_interface
: public ars_statistics
{
};
template
struct stats_interface
: public acss_statistics
{
virtual unsigned
acss_states() const override
{
// all visited states are in the state space search
return static_cast(this)->h_.size();
}
};
}
template
class ndfs_result final:
public emptiness_check_result,
// Conditionally inherit from acss_statistics or ars_statistics.
public stats_interface, heap::Has_Size>
{
public:
ndfs_result(const std::shared_ptr& ms)
: emptiness_check_result(ms->automaton()), ms_(ms),
h_(ms->get_heap())
{
}
virtual ~ndfs_result()
{
}
virtual twa_run_ptr accepting_run() override
{
const stack_type& stb = ms_->get_st_blue();
const stack_type& str = ms_->get_st_red();
SPOT_ASSERT(!stb.empty());
acc_cond::mark_t covered_acc = {};
accepting_transitions_list acc_trans;
const state* start;
start = stb.front().s->clone();
if (!str.empty())
{
if (a_->num_sets() == 0)
{
// take arbitrarily the last transition on the red stack
stack_type::const_iterator i, j;
i = j = str.begin(); ++i;
if (i == str.end())
i = stb.begin();
transition t = { i->s->clone(), j->label, j->acc,
j->s->clone() };
SPOT_ASSERT(h_.has_been_visited(t.source));
SPOT_ASSERT(h_.has_been_visited(t.dest));
acc_trans.push_back(t);
}
else
{
// ignore the prefix
stack_type::const_reverse_iterator i, j;
i = j = stb.rbegin(); ++j;
while (i->s->compare(start) != 0)
++i, ++j;
stack_type::const_reverse_iterator end = stb.rend();
for (; j != end; ++i, ++j)
{
if ((covered_acc & j->acc) != j->acc)
{
transition t = { i->s->clone(), j->label, j->acc,
j->s->clone() };
SPOT_ASSERT(h_.has_been_visited(t.source));
SPOT_ASSERT(h_.has_been_visited(t.dest));
acc_trans.push_back(t);
covered_acc |= j->acc;
}
}
j = str.rbegin();
if ((covered_acc & j->acc) != j->acc)
{
transition t = { i->s->clone(), j->label, j->acc,
j->s->clone() };
SPOT_ASSERT(h_.has_been_visited(t.source));
SPOT_ASSERT(h_.has_been_visited(t.dest));
acc_trans.push_back(t);
covered_acc |= j->acc;
}
i = j; ++j;
end = str.rend();
for (; j != end; ++i, ++j)
{
if ((covered_acc & j->acc) != j->acc)
{
transition t = { i->s->clone(), j->label, j->acc,
j->s->clone() };
SPOT_ASSERT(h_.has_been_visited(t.source));
SPOT_ASSERT(h_.has_been_visited(t.dest));
acc_trans.push_back(t);
covered_acc |= j->acc;
}
}
}
}
if (!a_->acc().accepting(covered_acc))
{
bool b = dfs(start, acc_trans, covered_acc);
SPOT_ASSERT(b);
(void) b;
}
start->destroy();
SPOT_ASSERT(!acc_trans.empty());
auto run = std::make_shared(automaton());
// construct run->cycle from acc_trans.
construct_cycle(run, acc_trans);
// construct run->prefix (a minimal path from the initial state to any
// state of run->cycle) and adjust the cycle to the state reached by the
// prefix.
construct_prefix(run);
for (typename accepting_transitions_list::const_iterator i =
acc_trans.begin(); i != acc_trans.end(); ++i)
{
i->source->destroy();
i->dest->destroy();
}
return run;
}
private:
std::shared_ptr ms_;
const heap& h_;
template
friend struct stats_interface;
struct transition {
const state* source;
bdd label;
acc_cond::mark_t acc;
const state* dest;
};
typedef std::list accepting_transitions_list;
typedef std::unordered_set state_set;
void clean(const const_twa_ptr& a, stack_type& st1,
state_set& seen, state_set& dead)
{
while (!st1.empty())
{
a->release_iter(st1.front().it);
st1.pop_front();
}
for (state_set::iterator i = seen.begin(); i != seen.end();)
{
const state* s = *i;
++i;
s->destroy();
}
for (state_set::iterator i = dead.begin(); i != dead.end();)
{
const state* s = *i;
++i;
s->destroy();
}
}
bool dfs(const state* target, accepting_transitions_list& acc_trans,
acc_cond::mark_t& covered_acc)
{
SPOT_ASSERT(h_.has_been_visited(target));
stack_type st1;
state_set seen, dead;
const state* start = target->clone();
seen.insert(start);
twa_succ_iterator* i = a_->succ_iter(start);
i->first();
st1.emplace_front(start, i, bddfalse, acc_cond::mark_t({}));
while (!st1.empty())
{
stack_item& f = st1.front();
ndfsr_trace << "DFS1 treats: " << a_->format_state(f.s)
<< std::endl;
if (!f.it->done())
{
const state *s_prime = f.it->dst();
ndfsr_trace << " Visit the successor: "
<< a_->format_state(s_prime) << std::endl;
bdd label = f.it->cond();
auto acc = f.it->acc();
f.it->next();
if (h_.has_been_visited(s_prime))
{
if (dead.find(s_prime) != dead.end())
{
ndfsr_trace << " it is dead, pop it" << std::endl;
s_prime->destroy();
}
else if (seen.find(s_prime) == seen.end())
{
this->inc_ars_cycle_states();
ndfsr_trace << " it is not seen, go down" << std::endl;
seen.insert(s_prime);
twa_succ_iterator* i = a_->succ_iter(s_prime);
i->first();
st1.emplace_front(s_prime, i, label, acc);
}
else if ((acc & covered_acc) != acc)
{
this->inc_ars_cycle_states();
ndfsr_trace << " a propagation is needed, "
<< "start a search" << std::endl;
if (search(s_prime, target, dead))
{
transition t = { f.s->clone(), label, acc,
s_prime->clone() };
SPOT_ASSERT(h_.has_been_visited(t.source));
SPOT_ASSERT(h_.has_been_visited(t.dest));
acc_trans.push_back(t);
covered_acc |= acc;
if (a_->acc().accepting(covered_acc))
{
clean(a_, st1, seen, dead);
s_prime->destroy();
return true;
}
}
s_prime->destroy();
}
else
{
ndfsr_trace << " already seen, pop it" << std::endl;
s_prime->destroy();
}
}
else
{
ndfsr_trace << " not seen during the search, pop it"
<< std::endl;
s_prime->destroy();
}
}
else
{
ndfsr_trace << " all the successors have been visited"
<< std::endl;
stack_item f_dest(f);
a_->release_iter(st1.front().it);
st1.pop_front();
if (!st1.empty() && ((f_dest.acc & covered_acc) != f_dest.acc))
{
ndfsr_trace << " a propagation is needed, start a search"
<< std::endl;
if (search(f_dest.s, target, dead))
{
transition t = { st1.front().s->clone(),
f_dest.label, f_dest.acc,
f_dest.s->clone() };
SPOT_ASSERT(h_.has_been_visited(t.source));
SPOT_ASSERT(h_.has_been_visited(t.dest));
acc_trans.push_back(t);
covered_acc |= f_dest.acc;
if (a_->acc().accepting(covered_acc))
{
clean(a_, st1, seen, dead);
return true;
}
}
}
else
{
ndfsr_trace << " no propagation needed, pop it"
<< std::endl;
}
}
}
clean(a_, st1, seen, dead);
return false;
}
class test_path: public bfs_steps
{
public:
test_path(ars_statistics* ars,
const const_twa_ptr& a, const state* t,
const state_set& d, const heap& h)
: bfs_steps(a), ars(ars), target(t), dead(d), h(h)
{
}
~test_path()
{
state_set::const_iterator i = seen.begin();
while (i != seen.end())
{
const state* ptr = *i;
++i;
ptr->destroy();
}
}
const state* search(const state* start, twa_run::steps& l)
{
const state* s = filter(start);
if (s)
return this->bfs_steps::search(s, l);
else
return nullptr;
}
const state* filter(const state* s) override
{
if (!h.has_been_visited(s)
|| seen.find(s) != seen.end()
|| dead.find(s) != dead.end())
{
s->destroy();
return nullptr;
}
ars->inc_ars_cycle_states();
seen.insert(s);
return s;
}
void
finalize(const std::map&,
const twa_run::step&, const state*, twa_run::steps&) override
{
}
const state_set& get_seen() const
{
return seen;
}
bool match(twa_run::step&, const state* dest) override
{
return target->compare(dest) == 0;
}
private:
ars_statistics* ars;
state_set seen;
const state* target;
const state_set& dead;
const heap& h;
};
bool search(const state* start, const state* target, state_set& dead)
{
twa_run::steps path;
if (start->compare(target) == 0)
return true;
test_path s(this, a_, target, dead, h_);
const state* res = s.search(start->clone(), path);
if (res)
{
SPOT_ASSERT(res->compare(target) == 0);
return true;
}
else
{
state_set::const_iterator it;
for (it = s.get_seen().begin(); it != s.get_seen().end(); ++it)
dead.insert((*it)->clone());
return false;
}
}
typedef std::unordered_multimap m_source_trans;
template
class min_path: public bfs_steps
{
public:
min_path(ars_statistics* ars,
const const_twa_ptr& a,
const m_source_trans& target, const heap& h)
: bfs_steps(a), ars(ars), target(target), h(h)
{
}
~min_path()
{
state_set::const_iterator i = seen.begin();
while (i != seen.end())
{
const state* ptr = *i;
++i;
ptr->destroy();
}
}
const state* search(const state* start, twa_run::steps& l)
{
const state* s = filter(start);
if (s)
return this->bfs_steps::search(s, l);
else
return nullptr;
}
const state* filter(const state* s) override
{
ndfsr_trace << "filter: " << a_->format_state(s);
if (!h.has_been_visited(s) || seen.find(s) != seen.end())
{
if (!h.has_been_visited(s))
ndfsr_trace << " not visited" << std::endl;
else
ndfsr_trace << " already seen" << std::endl;
s->destroy();
return nullptr;
}
ndfsr_trace << " OK" << std::endl;
if (cycle)
ars->inc_ars_cycle_states();
else
ars->inc_ars_prefix_states();
seen.insert(s);
return s;
}
bool match(twa_run::step&, const state* dest) override
{
ndfsr_trace << "match: " << a_->format_state(dest)
<< std::endl;
return target.find(dest) != target.end();
}
private:
ars_statistics* ars;
state_set seen;
const m_source_trans& target;
const heap& h;
};
void construct_cycle(twa_run_ptr run,
const accepting_transitions_list& acc_trans)
{
SPOT_ASSERT(!acc_trans.empty());
transition current = acc_trans.front();
// insert the first accepting transition in the cycle
ndfsr_trace << "the initial accepting transition is from "
<< a_->format_state(current.source) << " to "
<< a_->format_state(current.dest) << std::endl;
const state* begin = current.source;
m_source_trans target;
typename accepting_transitions_list::const_iterator i =
acc_trans.begin();
ndfsr_trace << "targets are the source states: ";
for (++i; i != acc_trans.end(); ++i)
{
if (i->source->compare(begin) == 0 &&
i->source->compare(i->dest) == 0)
{
ndfsr_trace << "(self loop " << a_->format_state(i->source)
<< " -> " << a_->format_state(i->dest)
<< " ignored) ";
twa_run::step st = { i->source->clone(), i->label, i->acc };
run->cycle.push_back(st);
}
else
{
ndfsr_trace << a_->format_state(i->source) << " (-> "
<< a_->format_state(i->dest) << ") ";
target.emplace(i->source, *i);
}
}
ndfsr_trace << std::endl;
twa_run::step st = { current.source->clone(), current.label,
current.acc };
run->cycle.push_back(st);
while (!target.empty())
{
// find a minimal path from current.dest to any source state in
// target.
ndfsr_trace << "looking for a path from "
<< a_->format_state(current.dest) << std::endl;
typename m_source_trans::iterator i = target.find(current.dest);
if (i == target.end())
{
min_path s(this, a_, target, h_);
const state* res = s.search(current.dest->clone(), run->cycle);
// init current to the corresponding transition.
SPOT_ASSERT(res);
ndfsr_trace << a_->format_state(res) << " reached" << std::endl;
i = target.find(res);
SPOT_ASSERT(i != target.end());
}
else
{
ndfsr_trace << "this is a target" << std::endl;
}
current = i->second;
// complete the path with the corresponding transition
twa_run::step st = { current.source->clone(), current.label,
current.acc };
run->cycle.push_back(st);
// remove this source state of target
target.erase(i);
}
if (current.dest->compare(begin) != 0)
{
// close the cycle by adding a path from the destination of the
// last inserted transition to the source of the first one
ndfsr_trace << std::endl << "looking for a path from "
<< a_->format_state(current.dest) << " to "
<< a_->format_state(begin) << std::endl;
transition tmp;
// Initialize to please GCC 4.0.1 (Darwin).
tmp.source = tmp.dest = nullptr;
tmp.acc = {};
target.emplace(begin, tmp);
min_path s(this, a_, target, h_);
const state* res = s.search(current.dest->clone(), run->cycle);
SPOT_ASSERT(res);
SPOT_ASSERT(res->compare(begin) == 0);
(void)res;
}
}
void construct_prefix(twa_run_ptr run)
{
m_source_trans target;
transition tmp;
tmp.source = tmp.dest = nullptr; // Initialize to please GCC 4.0.
tmp.acc = {};
// Register all states from the cycle as target of the BFS.
for (twa_run::steps::const_iterator i = run->cycle.begin();
i != run->cycle.end(); ++i)
target.emplace(i->s, tmp);
const state* prefix_start = a_->get_init_state();
// There are two cases: either the initial state is already on
// the cycle, or it is not. If it is, we will have to rotate
// the cycle so it begins on this position. Otherwise we will shift
// the cycle so it begins on the state that follows the prefix.
// cycle_entry_point is that state.
const state* cycle_entry_point;
typename m_source_trans::const_iterator ps = target.find(prefix_start);
if (ps != target.end())
{
// The initial state is on the cycle.
prefix_start->destroy();
cycle_entry_point = ps->first->clone();
}
else
{
// This initial state is outside the cycle. Compute the prefix.
min_path s(this, a_, target, h_);
cycle_entry_point = s.search(prefix_start, run->prefix);
SPOT_ASSUME(cycle_entry_point);
cycle_entry_point = cycle_entry_point->clone();
}
// Locate cycle_entry_point on the cycle.
twa_run::steps::iterator cycle_ep_it;
for (cycle_ep_it = run->cycle.begin();
cycle_ep_it != run->cycle.end()
&& cycle_entry_point->compare(cycle_ep_it->s); ++cycle_ep_it)
continue;
SPOT_ASSERT(cycle_ep_it != run->cycle.end());
cycle_entry_point->destroy();
// Now shift the cycle so it starts on cycle_entry_point.
run->cycle.splice(run->cycle.end(), run->cycle,
run->cycle.begin(), cycle_ep_it);
}
};
}
#undef ndfsr_trace