// -*- coding: utf-8 -*-
// Copyright (C) 2009, 2011, 2012, 2014, 2015 Laboratoire de Recherche et
// Développement de l'Epita (LRDE).
// Copyright (C) 2003, 2004, 2006 Laboratoire d'Informatique de
// Paris 6 (LIP6), département Systèmes Répartis Coopératifs (SRC),
// Université Pierre et Marie Curie.
//
// This file is part of Spot, a model checking library.
//
// Spot is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
//
// Spot is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
// or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
// License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
#include
#include
#include
#include
#include
namespace spot
{
////////////////////////////////////////////////////////////
// state_product
state_product::~state_product()
{
left_->destroy();
right_->destroy();
}
void
state_product::destroy() const
{
if (--count_)
return;
fixed_size_pool* p = pool_;
this->~state_product();
p->deallocate(this);
}
int
state_product::compare(const state* other) const
{
const state_product* o = down_cast(other);
assert(o);
int res = left_->compare(o->left());
if (res != 0)
return res;
return right_->compare(o->right());
}
size_t
state_product::hash() const
{
// We assume that size_t is 32-bit wide.
return wang32_hash(left_->hash()) ^ wang32_hash(right_->hash());
}
state_product*
state_product::clone() const
{
++count_;
return const_cast(this);
}
////////////////////////////////////////////////////////////
// twa_succ_iterator_product
namespace
{
class twa_succ_iterator_product_common: public twa_succ_iterator
{
public:
twa_succ_iterator_product_common(twa_succ_iterator* left,
twa_succ_iterator* right,
const twa_product* prod,
fixed_size_pool* pool)
: left_(left), right_(right), prod_(prod), pool_(pool)
{
}
void recycle(const const_twa_ptr& l, twa_succ_iterator* left,
const_twa_ptr r, twa_succ_iterator* right)
{
l->release_iter(left_);
left_ = left;
r->release_iter(right_);
right_ = right;
}
virtual ~twa_succ_iterator_product_common()
{
delete left_;
delete right_;
}
virtual bool next_non_false_() = 0;
bool first()
{
if (!right_)
return false;
// If one of the two successor sets is empty initially, we
// reset right_, so that done() can detect this situation
// easily. (We choose to reset right_ because this variable
// is already used by done().)
if (!(left_->first() && right_->first()))
{
delete right_;
right_ = nullptr;
return false;
}
return next_non_false_();
}
bool done() const
{
return !right_ || right_->done();
}
const state_product* dst() const
{
return new(pool_->allocate()) state_product(left_->dst(),
right_->dst(),
pool_);
}
protected:
twa_succ_iterator* left_;
twa_succ_iterator* right_;
const twa_product* prod_;
fixed_size_pool* pool_;
friend class spot::twa_product;
};
/// \brief Iterate over the successors of a product computed on the fly.
class twa_succ_iterator_product: public twa_succ_iterator_product_common
{
public:
twa_succ_iterator_product(twa_succ_iterator* left,
twa_succ_iterator* right,
const twa_product* prod,
fixed_size_pool* pool)
: twa_succ_iterator_product_common(left, right, prod, pool)
{
}
virtual ~twa_succ_iterator_product()
{
}
bool step_()
{
if (left_->next())
return true;
left_->first();
return right_->next();
}
bool next_non_false_()
{
assert(!done());
do
{
bdd l = left_->cond();
bdd r = right_->cond();
bdd current_cond = l & r;
if (current_cond != bddfalse)
{
current_cond_ = current_cond;
return true;
}
}
while (step_());
return false;
}
bool next()
{
if (step_())
return next_non_false_();
return false;
}
bdd cond() const
{
return current_cond_;
}
acc_cond::mark_t acc() const
{
return left_->acc() | (right_->acc() << prod_->left_acc().num_sets());
}
protected:
bdd current_cond_;
};
/// Iterate over the successors of a product computed on the fly.
/// This one assumes that LEFT is an iterator over a Kripke structure
class twa_succ_iterator_product_kripke:
public twa_succ_iterator_product_common
{
public:
twa_succ_iterator_product_kripke(twa_succ_iterator* left,
twa_succ_iterator* right,
const twa_product* prod,
fixed_size_pool* pool)
: twa_succ_iterator_product_common(left, right, prod, pool)
{
}
virtual ~twa_succ_iterator_product_kripke()
{
}
bool next_non_false_()
{
// All the transitions of left_ iterator have the
// same label, because it is a Kripke structure.
bdd l = left_->cond();
assert(!right_->done());
do
{
bdd r = right_->cond();
bdd current_cond = l & r;
if (current_cond != bddfalse)
{
current_cond_ = current_cond;
return true;
}
}
while (right_->next());
return false;
}
bool next()
{
if (left_->next())
return true;
left_->first();
if (right_->next())
return next_non_false_();
return false;
}
bdd cond() const
{
return current_cond_;
}
acc_cond::mark_t acc() const
{
return right_->acc();
}
protected:
bdd current_cond_;
};
} // anonymous
////////////////////////////////////////////////////////////
// twa_product
twa_product::twa_product(const const_twa_ptr& left,
const const_twa_ptr& right)
: twa(left->get_dict()), left_(left), right_(right),
pool_(sizeof(state_product))
{
assert(get_dict() == right_->get_dict());
// If one of the side is a Kripke structure, it is easier to deal
// with (we don't have to fix the acceptance conditions, and
// computing the successors can be improved a bit).
if (dynamic_cast(left_.get()))
{
left_kripke_ = true;
}
else if (dynamic_cast(right_.get()))
{
std::swap(left_, right_);
left_kripke_ = true;
}
else
{
left_kripke_ = false;
}
auto d = get_dict();
d->register_all_propositions_of(&left_, this);
d->register_all_propositions_of(&right_, this);
assert(num_sets() == 0);
auto left_num = left->num_sets();
auto right_acc = right->get_acceptance() << left_num;
right_acc &= left->get_acceptance();
set_acceptance(left_num + right->num_sets(), right_acc);
}
twa_product::~twa_product()
{
// Prevent these states from being destroyed by ~tgba(): they
// will be destroyed before when the pool is destructed.
if (last_support_conditions_input_)
{
last_support_conditions_input_->destroy();
last_support_conditions_input_ = nullptr;
}
}
const state*
twa_product::get_init_state() const
{
fixed_size_pool* p = const_cast(&pool_);
return new(p->allocate()) state_product(left_->get_init_state(),
right_->get_init_state(), p);
}
twa_succ_iterator*
twa_product::succ_iter(const state* state) const
{
const state_product* s = down_cast(state);
assert(s);
twa_succ_iterator* li = left_->succ_iter(s->left());
twa_succ_iterator* ri = right_->succ_iter(s->right());
if (iter_cache_)
{
twa_succ_iterator_product_common* it =
down_cast(iter_cache_);
it->recycle(left_, li, right_, ri);
iter_cache_ = nullptr;
return it;
}
fixed_size_pool* p = const_cast(&pool_);
if (left_kripke_)
return new twa_succ_iterator_product_kripke(li, ri, this, p);
else
return new twa_succ_iterator_product(li, ri, this, p);
}
bdd
twa_product::compute_support_conditions(const state* in) const
{
const state_product* s = down_cast(in);
assert(s);
bdd lsc = left_->support_conditions(s->left());
bdd rsc = right_->support_conditions(s->right());
return lsc & rsc;
}
const acc_cond& twa_product::left_acc() const
{
return left_->acc();
}
const acc_cond& twa_product::right_acc() const
{
return right_->acc();
}
std::string
twa_product::format_state(const state* state) const
{
const state_product* s = down_cast(state);
assert(s);
return (left_->format_state(s->left())
+ " * "
+ right_->format_state(s->right()));
}
state*
twa_product::project_state(const state* s, const const_twa_ptr& t) const
{
const state_product* s2 = down_cast(s);
assert(s2);
if (t.get() == this)
return s2->clone();
state* res = left_->project_state(s2->left(), t);
if (res)
return res;
return right_->project_state(s2->right(), t);
}
std::string
twa_product::transition_annotation(const twa_succ_iterator* t) const
{
const twa_succ_iterator_product_common* i =
down_cast(t);
assert(i);
std::string left = left_->transition_annotation(i->left_);
std::string right = right_->transition_annotation(i->right_);
if (left == "")
return right;
if (right == "")
return left;
return "<" + left + ", " + right + ">";
}
//////////////////////////////////////////////////////////////////////
// twa_product_init
twa_product_init::twa_product_init(const const_twa_ptr& left,
const const_twa_ptr& right,
const state* left_init,
const state* right_init)
: twa_product(left, right),
left_init_(left_init), right_init_(right_init)
{
if (left_ != left)
std::swap(left_init_, right_init_);
}
const state*
twa_product_init::get_init_state() const
{
fixed_size_pool* p = const_cast(&pool_);
return new(p->allocate()) state_product(left_init_->clone(),
right_init_->clone(), p);
}
}