// -*- coding: utf-8 -*- // Copyright (C) 2013, 2014, 2015 Laboratoire de Recherche et // Développement de l'Epita. // // This file is part of Spot, a model checking library. // // Spot is free software; you can redistribute it and/or modify it // under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3 of the License, or // (at your option) any later version. // // Spot is distributed in the hope that it will be useful, but WITHOUT // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY // or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public // License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . #include #include #include #include "dtgbasat.hh" #include "reachiter.hh" #include #include #include "sccinfo.hh" #include "twa/bddprint.hh" #include "ltlast/constant.hh" #include "stats.hh" #include "ltlenv/defaultenv.hh" #include "misc/satsolver.hh" #include "misc/timer.hh" #include "isweakscc.hh" #include "dotty.hh" // If you set the SPOT_TMPKEEP environment variable the temporary // file used to communicate with the sat solver will be left in // the current directory. // // Additionally, if the following DEBUG macro is set to 1, the CNF // file will be output with a comment before each clause, and an // additional output file (dtgba-sat.dbg) will be created with a list // of all positive variables in the result and their meaning. #define DEBUG 0 #if DEBUG #define dout out << "c " #define trace std::cerr #else #define dout while (0) std::cout #define trace dout #endif namespace spot { namespace { static bdd_dict_ptr debug_dict = 0; static const acc_cond* debug_ref_acc = 0; static const acc_cond* debug_cand_acc = 0; struct transition { unsigned src; bdd cond; unsigned dst; transition(int src, bdd cond, int dst) : src(src), cond(cond), dst(dst) { } bool operator<(const transition& other) const { if (this->src < other.src) return true; if (this->src > other.src) return false; if (this->dst < other.dst) return true; if (this->dst > other.dst) return false; return this->cond.id() < other.cond.id(); } bool operator==(const transition& other) const { return (this->src == other.src && this->dst == other.dst && this->cond.id() == other.cond.id()); } }; struct src_cond { unsigned src; bdd cond; src_cond(int src, bdd cond) : src(src), cond(cond) { } bool operator<(const src_cond& other) const { if (this->src < other.src) return true; if (this->src > other.src) return false; return this->cond.id() < other.cond.id(); } bool operator==(const src_cond& other) const { return (this->src == other.src && this->cond.id() == other.cond.id()); } }; struct transition_acc { unsigned src; bdd cond; acc_cond::mark_t acc; unsigned dst; transition_acc(int src, bdd cond, acc_cond::mark_t acc, int dst) : src(src), cond(cond), acc(acc), dst(dst) { } bool operator<(const transition_acc& other) const { if (this->src < other.src) return true; if (this->src > other.src) return false; if (this->dst < other.dst) return true; if (this->dst > other.dst) return false; if (this->cond.id() < other.cond.id()) return true; if (this->cond.id() > other.cond.id()) return false; return this->acc < other.acc; } bool operator==(const transition_acc& other) const { return (this->src == other.src && this->dst == other.dst && this->cond.id() == other.cond.id() && this->acc == other.acc); } }; struct path { unsigned src_cand; unsigned src_ref; unsigned dst_cand; unsigned dst_ref; acc_cond::mark_t acc_cand; acc_cond::mark_t acc_ref; path(unsigned src_cand, unsigned src_ref) : src_cand(src_cand), src_ref(src_ref), dst_cand(src_cand), dst_ref(src_ref), acc_cand(0U), acc_ref(0U) { } path(unsigned src_cand, unsigned src_ref, unsigned dst_cand, unsigned dst_ref, acc_cond::mark_t acc_cand, acc_cond::mark_t acc_ref) : src_cand(src_cand), src_ref(src_ref), dst_cand(dst_cand), dst_ref(dst_ref), acc_cand(acc_cand), acc_ref(acc_ref) { } bool operator<(const path& other) const { if (this->src_cand < other.src_cand) return true; if (this->src_cand > other.src_cand) return false; if (this->src_ref < other.src_ref) return true; if (this->src_ref > other.src_ref) return false; if (this->dst_cand < other.dst_cand) return true; if (this->dst_cand > other.dst_cand) return false; if (this->dst_ref < other.dst_ref) return true; if (this->dst_ref > other.dst_ref) return false; if (this->acc_ref < other.acc_ref) return true; if (this->acc_ref > other.acc_ref) return false; if (this->acc_cand < other.acc_cand) return true; if (this->acc_cand > other.acc_cand) return false; return false; } }; std::ostream& operator<<(std::ostream& os, const transition& t) { os << '<' << t.src << ',' << bdd_format_formula(debug_dict, t.cond) << ',' << t.dst << '>'; return os; } std::ostream& operator<<(std::ostream& os, const transition_acc& t) { os << '<' << t.src << ',' << bdd_format_formula(debug_dict, t.cond) << ',' << debug_cand_acc->format(t.acc) << ',' << t.dst << '>'; return os; } std::ostream& operator<<(std::ostream& os, const path& p) { os << '<' << p.src_cand << ',' << p.src_ref << ',' << p.dst_cand << ',' << p.dst_ref << ", " << debug_cand_acc->format(p.acc_cand) << ", " << debug_ref_acc->format(p.acc_ref) << '>'; return os; } struct dict { dict(const const_twa_ptr& a) : aut(a) { } const_twa_ptr aut; typedef std::map trans_map; typedef std::map trans_acc_map; trans_map transid; trans_acc_map transaccid; typedef std::map rev_map; typedef std::map rev_acc_map; rev_map revtransid; rev_acc_map revtransaccid; std::map pathid; int nvars = 0; //typedef std::unordered_map state_map; //typedef std::unordered_map int_map; //state_map state_to_int; // int_map int_to_state; unsigned cand_size; unsigned int cand_nacc; std::vector cand_acc; // size cand_nacc std::vector all_cand_acc; std::vector all_ref_acc; std::vector is_weak_scc; acc_cond cacc; ~dict() { aut->get_dict()->unregister_all_my_variables(this); } }; unsigned declare_vars(const const_twa_graph_ptr& aut, dict& d, bdd ap, bool state_based, scc_info& sm) { bdd_dict_ptr bd = aut->get_dict(); d.cand_acc.resize(d.cand_nacc); d.cacc.add_sets(d.cand_nacc); d.all_cand_acc.push_back(0U); for (unsigned n = 0; n < d.cand_nacc; ++n) { auto c = d.cacc.mark(n); d.cand_acc[n] = c; size_t s = d.all_cand_acc.size(); for (size_t i = 0; i < s; ++i) d.all_cand_acc.push_back(d.all_cand_acc[i] | c); } d.all_ref_acc.push_back(0U); unsigned ref_nacc = aut->acc().num_sets(); for (unsigned n = 0; n < ref_nacc; ++n) { auto c = aut->acc().mark(n); size_t s = d.all_ref_acc.size(); for (size_t i = 0; i < s; ++i) d.all_ref_acc.push_back(d.all_ref_acc[i] | c); } unsigned ref_size = aut->num_states(); if (d.cand_size == -1U) for (unsigned i = 0; i < ref_size; ++i) if (sm.reachable_state(i)) ++d.cand_size; // Note that we start from -1U the // cand_size is one less than the // number of reachable states. for (unsigned i = 0; i < ref_size; ++i) { if (!sm.reachable_state(i)) continue; unsigned i_scc = sm.scc_of(i); bool is_weak = d.is_weak_scc[i_scc]; for (unsigned j = 0; j < d.cand_size; ++j) { for (unsigned k = 0; k < ref_size; ++k) { if (!sm.reachable_state(k)) continue; if (sm.scc_of(k) != i_scc) continue; for (unsigned l = 0; l < d.cand_size; ++l) { size_t sfp = is_weak ? 1 : d.all_ref_acc.size(); for (size_t fp = 0; fp < sfp; ++fp) { size_t sf = d.all_cand_acc.size(); for (size_t f = 0; f < sf; ++f) { path p(j, i, l, k, d.all_cand_acc[f], d.all_ref_acc[fp]); d.pathid[p] = ++d.nvars; } } } } } } if (!state_based) { for (unsigned i = 0; i < d.cand_size; ++i) for (unsigned j = 0; j < d.cand_size; ++j) { bdd all = bddtrue; while (all != bddfalse) { bdd one = bdd_satoneset(all, ap, bddfalse); all -= one; transition t(i, one, j); d.transid[t] = ++d.nvars; d.revtransid.emplace(d.nvars, t); // Create the variable for the accepting transition // immediately afterwards. It helps parsing the // result. for (unsigned n = 0; n < d.cand_nacc; ++n) { transition_acc ta(i, one, d.cand_acc[n], j); d.transaccid[ta] = ++d.nvars; d.revtransaccid.emplace(d.nvars, ta); } } } } else // state based { for (unsigned i = 0; i < d.cand_size; ++i) for (unsigned n = 0; n < d.cand_nacc; ++n) { ++d.nvars; for (unsigned j = 1; j < d.cand_size; ++j) { bdd all = bddtrue; while (all != bddfalse) { bdd one = bdd_satoneset(all, ap, bddfalse); all -= one; transition_acc ta(i, one, d.cand_acc[n], j); d.transaccid[ta] = d.nvars; d.revtransaccid.emplace(d.nvars, ta); } } } for (unsigned i = 0; i < d.cand_size; ++i) for (unsigned j = 0; j < d.cand_size; ++j) { bdd all = bddtrue; while (all != bddfalse) { bdd one = bdd_satoneset(all, ap, bddfalse); all -= one; transition t(i, one, j); d.transid[t] = ++d.nvars; d.revtransid.emplace(d.nvars, t); } } } return ref_size; } typedef std::pair sat_stats; static sat_stats dtgba_to_sat(std::ostream& out, const_twa_graph_ptr ref, dict& d, bool state_based) { clause_counter nclauses; // Compute the AP used in the hard way. bdd ap = bddtrue; for (auto& t: ref->transitions()) ap &= bdd_support(t.cond); // Count the number of atomic propositions int nap = 0; { bdd cur = ap; while (cur != bddtrue) { ++nap; cur = bdd_high(cur); } nap = 1 << nap; } scc_info sm(ref); d.is_weak_scc = sm.weak_sccs(); // Number all the SAT variables we may need. unsigned ref_size = declare_vars(ref, d, ap, state_based, sm); // empty automaton is impossible if (d.cand_size == 0) { out << "p cnf 1 2\n-1 0\n1 0\n"; return std::make_pair(1, 2); } // An empty line for the header out << " \n"; #if DEBUG debug_dict = ref->get_dict(); debug_ref_acc = &ref->acc(); debug_cand_acc = &d.cacc; dout << "ref_size: " << ref_size << '\n'; dout << "cand_size: " << d.cand_size << '\n'; #endif auto& racc = ref->acc(); dout << "symmetry-breaking clauses\n"; int j = 0; bdd all = bddtrue; while (all != bddfalse) { bdd s = bdd_satoneset(all, ap, bddfalse); all -= s; for (unsigned i = 0; i < d.cand_size - 1; ++i) for (unsigned k = i * nap + j + 2; k < d.cand_size; ++k) { transition t(i, s, k); int ti = d.transid[t]; dout << "¬" << t << '\n'; out << -ti << " 0\n"; ++nclauses; } ++j; } if (!nclauses.nb_clauses()) dout << "(none)\n"; dout << "(8) the candidate automaton is complete\n"; for (unsigned q1 = 0; q1 < d.cand_size; ++q1) { bdd all = bddtrue; while (all != bddfalse) { bdd s = bdd_satoneset(all, ap, bddfalse); all -= s; #if DEBUG dout; for (unsigned q2 = 0; q2 < d.cand_size; ++q2) { transition t(q1, s, q2); out << t << "δ"; if (q2 != d.cand_size) out << " ∨ "; } out << '\n'; #endif for (unsigned q2 = 0; q2 < d.cand_size; ++q2) { transition t(q1, s, q2); int ti = d.transid[t]; out << ti << ' '; } out << "0\n"; ++nclauses; } } dout << "(9) the initial state is reachable\n"; { unsigned init = ref->get_init_state_number(); dout << path(0, init) << '\n'; out << d.pathid[path(0, init)] << " 0\n"; ++nclauses; } for (unsigned q1 = 0; q1 < d.cand_size; ++q1) for (unsigned q1p = 0; q1p < ref_size; ++q1p) { if (!sm.reachable_state(q1p)) continue; dout << "(10) augmenting paths based on Cand[" << q1 << "] and Ref[" << q1p << "]\n"; path p1(q1, q1p); int p1id = d.pathid[p1]; for (auto& tr: ref->out(q1p)) { unsigned dp = tr.dst; bdd all = tr.cond; while (all != bddfalse) { bdd s = bdd_satoneset(all, ap, bddfalse); all -= s; for (unsigned q2 = 0; q2 < d.cand_size; ++q2) { transition t(q1, s, q2); int ti = d.transid[t]; path p2(q2, dp); int succ = d.pathid[p2]; if (p1id == succ) continue; dout << p1 << " ∧ " << t << "δ → " << p2 << '\n'; out << -p1id << ' ' << -ti << ' ' << succ << " 0\n"; ++nclauses; } } } } // construction of constraints (11,12,13) for (unsigned q1p = 0; q1p < ref_size; ++q1p) { if (!sm.reachable_state(q1p)) continue; unsigned q1p_scc = sm.scc_of(q1p); for (unsigned q2p = 0; q2p < ref_size; ++q2p) { if (!sm.reachable_state(q2p)) continue; // We are only interested in transition that can form a // cycle, so they must belong to the same SCC. if (sm.scc_of(q2p) != q1p_scc) continue; bool is_weak = d.is_weak_scc[q1p_scc]; bool is_acc = sm.is_accepting_scc(q1p_scc); for (unsigned q1 = 0; q1 < d.cand_size; ++q1) for (unsigned q2 = 0; q2 < d.cand_size; ++q2) { size_t sf = d.all_cand_acc.size(); size_t sfp = is_weak ? 1 : d.all_ref_acc.size(); for (size_t f = 0; f < sf; ++f) for (size_t fp = 0; fp < sfp; ++fp) { path p(q1, q1p, q2, q2p, d.all_cand_acc[f], d.all_ref_acc[fp]); dout << "(11&12&13) paths from " << p << '\n'; int pid = d.pathid[p]; for (auto& tr: ref->out(q2p)) { unsigned dp = tr.dst; // Skip destinations not in the SCC. if (sm.scc_of(dp) != q1p_scc) continue; for (unsigned q3 = 0; q3 < d.cand_size; ++q3) { bdd all = tr.cond; acc_cond::mark_t curacc = tr.acc; while (all != bddfalse) { bdd l = bdd_satoneset(all, ap, bddfalse); all -= l; transition t(q2, l, q3); int ti = d.transid[t]; if (dp == q1p && q3 == q1) // (11,12) loop { if ((!is_acc) || (!is_weak && !racc.accepting (curacc | d.all_ref_acc[fp]))) { #if DEBUG dout << "(11) " << p << " ∧ " << t << "δ → ¬("; bool notfirst = false; acc_cond::mark_t all_ = d.all_cand_acc.back() - d.all_cand_acc[f]; for (auto m: d.cacc.sets(all_)) { transition_acc ta(q2, l, d.cacc.mark(m), q1); if (notfirst) out << " ∧ "; else notfirst = true; out << ta << "FC"; } out << ")\n"; #endif // DEBUG out << -pid << ' ' << -ti; // 11 acc_cond::mark_t all_f = d.all_cand_acc.back() - d.all_cand_acc[f]; for (auto m: d.cacc.sets(all_f)) { transition_acc ta(q2, l, d.cacc.mark(m), q1); int tai = d.transaccid[ta]; assert(tai != 0); out << ' ' << -tai; } out << " 0\n"; ++nclauses; } else { #if DEBUG dout << "(12) " << p << " ∧ " << t << "δ → ("; bool notfirst = false; // 11 acc_cond::mark_t all_ = d.cacc.comp(d.all_cand_acc[f]); for (auto m: d.cacc.sets(all_)) { transition_acc ta(q2, l, d.cacc.mark(m), q1); if (notfirst) out << " ∧ "; else notfirst = true; out << ta << "FC"; } out << ")\n"; #endif // DEBUG // 12 acc_cond::mark_t all_f = d.cacc.comp(d.all_cand_acc[f]); for (auto m: d.cacc.sets(all_f)) { transition_acc ta(q2, l, d.cacc.mark(m), q1); int tai = d.transaccid[ta]; assert(tai != 0); out << -pid << ' ' << -ti << ' ' << tai << " 0\n"; ++nclauses; } } } // (13) augmenting paths (always). { size_t sf = d.all_cand_acc.size(); for (size_t f = 0; f < sf; ++f) { acc_cond::mark_t f2 = p.acc_cand | d.all_cand_acc[f]; acc_cond::mark_t f2p = 0U; if (!is_weak) f2p = p.acc_ref | curacc; path p2(p.src_cand, p.src_ref, q3, dp, f2, f2p); int p2id = d.pathid[p2]; if (pid == p2id) continue; #if DEBUG dout << "(13) " << p << " ∧ " << t << "δ "; auto biga_ = d.all_cand_acc[f]; for (unsigned m = 0; m < d.cand_nacc; ++m) { transition_acc ta(q2, l, d.cacc.mark(m), q3); const char* not_ = "¬"; if (d.cacc.has(biga_, m)) not_ = ""; out << " ∧ " << not_ << ta << "FC"; } out << " → " << p2 << '\n'; #endif out << -pid << ' ' << -ti << ' '; auto biga = d.all_cand_acc[f]; for (unsigned m = 0; m < d.cand_nacc; ++m) { transition_acc ta(q2, l, d.cacc.mark(m), q3); int tai = d.transaccid[ta]; if (d.cacc.has(biga, m)) tai = -tai; out << tai << ' '; } out << p2id << " 0\n"; ++nclauses; } } } } } } } } } out.seekp(0); out << "p cnf " << d.nvars << ' ' << nclauses.nb_clauses(); return std::make_pair(d.nvars, nclauses.nb_clauses()); } static twa_graph_ptr sat_build(const satsolver::solution& solution, dict& satdict, const_twa_graph_ptr aut, bool state_based) { auto autdict = aut->get_dict(); auto a = make_twa_graph(autdict); a->copy_ap_of(aut); a->set_generalized_buchi(satdict.cand_nacc); if (state_based) a->prop_state_based_acc(); a->new_states(satdict.cand_size); // Last transition set in the automaton. unsigned last_aut_trans = -1U; // Last transition read from the SAT result. const transition* last_sat_trans = nullptr; #if DEBUG std::fstream out("dtgba-sat.dbg", std::ios_base::trunc | std::ios_base::out); out.exceptions(std::ifstream::failbit | std::ifstream::badbit); std::set positive; #endif dout << "--- transition variables ---\n"; std::map state_acc; std::set seen_trans; for (int v: solution) { if (v < 0) // FIXME: maybe we can have (v < NNN)? continue; #if DEBUG positive.insert(v); #endif dict::rev_map::const_iterator t = satdict.revtransid.find(v); if (t != satdict.revtransid.end()) { // Skip (s,l,d2) if we have already seen some (s,l,d1). if (seen_trans.insert(src_cond(t->second.src, t->second.cond)).second) { acc_cond::mark_t acc = 0U; if (state_based) { auto i = state_acc.find(t->second.src); if (i != state_acc.end()) acc = i->second; } last_aut_trans = a->new_transition(t->second.src, t->second.dst, t->second.cond, acc); last_sat_trans = &t->second; dout << v << '\t' << t->second << "δ\n"; } } else { dict::rev_acc_map::const_iterator ta; ta = satdict.revtransaccid.find(v); // This assumes that the sat solvers output variables in // increasing order. if (ta != satdict.revtransaccid.end()) { dout << v << '\t' << ta->second << "F\n"; if (last_sat_trans && ta->second.src == last_sat_trans->src && ta->second.cond == last_sat_trans->cond && ta->second.dst == last_sat_trans->dst) { assert(!state_based); auto& v = a->trans_data(last_aut_trans).acc; v |= ta->second.acc; } else if (state_based) { auto& v = state_acc[ta->second.src]; v |= ta->second.acc; } } } } #if DEBUG dout << "--- pathid variables ---\n"; for (auto pit: satdict.pathid) if (positive.find(pit.second) != positive.end()) dout << pit.second << '\t' << pit.first << "C\n"; #endif a->merge_transitions(); return a; } } twa_graph_ptr dtgba_sat_synthetize(const const_twa_graph_ptr& a, unsigned target_acc_number, int target_state_number, bool state_based) { if (!a->acc().is_generalized_buchi()) throw std::runtime_error ("dtgba_sat() can only work with generalized Büchi acceptance"); if (target_state_number == 0) return nullptr; trace << "dtgba_sat_synthetize(..., acc = " << target_acc_number << ", states = " << target_state_number << ", state_based = " << state_based << ")\n"; dict d(a); d.cand_size = target_state_number; d.cand_nacc = target_acc_number; satsolver solver; satsolver::solution_pair solution; timer_map t; t.start("encode"); sat_stats s = dtgba_to_sat(solver(), a, d, state_based); t.stop("encode"); t.start("solve"); solution = solver.get_solution(); t.stop("solve"); twa_graph_ptr res = nullptr; if (!solution.second.empty()) res = sat_build(solution.second, d, a, state_based); // Always copy the environment variable into a static string, // so that we (1) look it up once, but (2) won't crash if the // environment is changed. static std::string log = []() { auto s = getenv("SPOT_SATLOG"); return s ? s : ""; }(); if (!log.empty()) { std::fstream out(log, std::ios_base::app | std::ios_base::out); out.exceptions(std::ifstream::failbit | std::ifstream::badbit); const timer& te = t.timer("encode"); const timer& ts = t.timer("solve"); out << target_state_number << ','; if (res) { tgba_sub_statistics st = sub_stats_reachable(res); out << st.states << ',' << st.transitions << ',' << st.sub_transitions; } else { out << ",,"; } out << ',' << s.first << ',' << s.second << ',' << te.utime() << ',' << te.stime() << ',' << ts.utime() << ',' << ts.stime() << '\n'; } static bool show = getenv("SPOT_SATSHOW"); if (show && res) dotty_reachable(std::cout, res); trace << "dtgba_sat_synthetize(...) = " << res << '\n'; return res; } twa_graph_ptr dtgba_sat_minimize(const const_twa_graph_ptr& a, unsigned target_acc_number, bool state_based) { int n_states = stats_reachable(a).states; twa_graph_ptr prev = nullptr; for (;;) { auto next = dtgba_sat_synthetize(prev ? prev : a, target_acc_number, --n_states, state_based); if (!next) return prev; else n_states = stats_reachable(next).states; prev = next; } SPOT_UNREACHABLE(); } twa_graph_ptr dtgba_sat_minimize_dichotomy(const const_twa_graph_ptr& a, unsigned target_acc_number, bool state_based) { int max_states = stats_reachable(a).states - 1; int min_states = 1; twa_graph_ptr prev = nullptr; while (min_states <= max_states) { int target = (max_states + min_states) / 2; auto next = dtgba_sat_synthetize(prev ? prev : a, target_acc_number, target, state_based); if (!next) { min_states = target + 1; } else { prev = next; max_states = stats_reachable(next).states - 1; } } return prev; } }